100 Soal dan Pembahasan UTBK Matematika Kelompok SAINTEK Tahun 2019
Catatan calon guru yang kita diskusikan saat ini akan membahas tentang 100 Soal dan Pembahasan UTBK Matematika Kelompok SAINTEK Tahun 2019. 100 Soal UTBK (Ujian Tulis Berbasis Komputer) ini dirangkum dari berbagai grup diskusi yang rata-rata pesertanya adalah anak SMA kelas XII (dua belas) atau alumni yang ikut UTBK.
Untuk masalah kebenaran atau keaslian soal ini, 'Apakah benar soal UTBK Matematika kelompok SAINTEK pada tahun 2019?', kita gunakan sedikit riset sederhana. Dari beberapa grup WA (WhatsApp) yang dipantau, beberapa anggota grup belajar yang sudah selesai melaksanakan UTBK menanyakan atau menyampaikan pertanyaan yang sama (mirip). Berdasarkan komentar-komentar atau pertanyaan anggota grup, disimpulkan bahwa soal yang dibahas adalah soal UTBK yang sudah selesai dilaksanakan.
Soal-soal UTBK matematika kelompok saintek tahun 2019 ini juga didukung dari file kumpulan soal-soal UTBK Matematika kelompok SAINTEK tahun 2019 yang dibagikan oleh bapak IndoINT.net.
Pembahasan soal Tes Kompetensi Akademik (TKA) Kelompok ujian SAINTEK Tahun 2019 ini nantinya masih jauh dari sempurna, jadi jika punya alternatif pembahasan atau saran-kritik yang sifatnya membangun silahkan disampaikan;
1. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui matriks $B=\begin{pmatrix}
1 & -4\\
5 & -2
\end{pmatrix}$ dan berlaku persamaan $A^{2}+B=\begin{pmatrix}
3 & -2\\
4 & -1
\end{pmatrix}$. Determinan matriks $A^{4}$ adalah...
$\begin{align}
(A)\ & 1 \\
(B)\ & 2 \\
(C)\ & 4 \\
(D)\ & 16 \\
(E)\ & 81
\end{align}$
Berdasarkan informasi pada penjumlahan matriks soal di atas, maka berlaku:
$\begin{align}
A^{2}+B &=\begin{pmatrix}
3 & -2\\
4 & -1
\end{pmatrix} \\
A^{2} &=\begin{pmatrix}
3 & -2\\
4 & -1
\end{pmatrix}-B \\
A^{2} &=\begin{pmatrix}
3 & -2\\
4 & -1
\end{pmatrix}-\begin{pmatrix}
1 & -4\\
5 & -2
\end{pmatrix}\\
A^{2} &=\begin{pmatrix}
3-1 & -2+4\\
4-5 & -1+2
\end{pmatrix} \\
A^{2} &=\begin{pmatrix}
2 & 2 \\
-1 & 1
\end{pmatrix} \\
\left| A^{2} \right| &=(2)(1)-(-1)(2)=4 \\
\end{align} $
Dengan mengunakan sifat determinan matriks $\left| A^{n} \right| = \left | A \right | ^{n}$ maka:
$\begin{align}
\left| A^{4} \right| &= \left| A^{2} \right|^{2} \\
&= 4^{2} =16
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(D)\ 16$
2. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui matriks $A$ berukuran $2 \times 2$ dan $B=\begin{pmatrix}
-1 & 3\\
0 & 2
\end{pmatrix}$. Jika $B-A=\begin{pmatrix}
2 & -1\\
1 & 0
\end{pmatrix}$ maka $det \left( 2A^{-1} \right)$ adalah...
$\begin{align}
(A)\ & -4 \\
(B)\ & -2 \\
(C)\ & -1 \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
Berdasarkan informasi pada pengurangan matriks soal di atas, maka berlaku:
$\begin{align}
B-A &=\begin{pmatrix}
2 & -1\\
1 & 0
\end{pmatrix} \\
B-\begin{pmatrix}
2 & -1\\
1 & 0
\end{pmatrix} &= A \\
\begin{pmatrix}
-1 & 3\\
0 & 2
\end{pmatrix}-\begin{pmatrix}
2 & -1\\
1 & 0
\end{pmatrix} &= A \\
\begin{pmatrix}
-1-2 & 3-(-1)\\
0-1 & 2-0
\end{pmatrix} &= A \\
\begin{pmatrix}
-3 & 4 \\
-1 & 2
\end{pmatrix} &= A \\
(-3)(2)-(-1)(4) &= \left| A \right| \\
-2 &= \left| A \right|
\end{align} $
Dengan mengunakan sifat determinan matriks $\left| A^{-1} \right| = \dfrac{1}{\left | A \right |}$ dan $ |k \times A_{m\times m}| = k^m \times |A| $maka:
$\begin{align}
\left| 2 A^{-1} \right| &= 2^{2} \cdot \left| A^{-1} \right| \\
&= 2^{2} \cdot \dfrac{1}{\left | A \right |} \\
&= 4 \cdot \dfrac{1}{-2} \\
&= -2
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(B)\ -2$
3. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui matriks $A$ berordo $2 \times 2$ dan matriks $B=\begin{pmatrix}
-3 & 5\\
-1 & 2
\end{pmatrix}$ dan $C=\begin{pmatrix}
4 & 5\\
2 & 3
\end{pmatrix}$. Jika $A$ memenuhi $B \cdot A=C$ maka determinan dari $\left( 2A^{-1} \right)$ adalah...
$\begin{align}
(A)\ & -2 \\
(B)\ & -1 \\
(C)\ & -\dfrac{1}{2} \\
(D)\ & \dfrac{1}{2} \\
(E)\ & 2
\end{align}$
Berdasarkan informasi pada perkalian matriks soal di atas dan menggunakan sifat determinan matriks yaitu $ \left|A \cdot B \right| = \left|A \right| \cdot \left| B \right|$ dan $ |k \times A_{m\times m}| = k^m \times |A|$, maka berlaku:
$\begin{align}
\left|B \right| &= \begin{vmatrix}
-3 & 5\\
-1 & 2
\end{vmatrix} \\
&= (-3)(2)-(-1)(5)=-1 \\
\left|C \right| &= \begin{vmatrix}
4 & 5\\
2 & 3
\end{vmatrix} \\
&= (4)(3)-(5)(2)=2 \\
\hline
B \cdot A &=C \\
\left|B \cdot A \right| &= \left| C \right| \\
\left|B \right| \cdot \left| A \right| &= \left| C \right| \\
-1 \cdot \left| A \right| &= 2 \\
\left| A \right| &= -2 \\
\hline
\left| 2 A^{-1} \right| &= 2^{2} \cdot \left| A^{-1} \right| \\
&= 2^{2} \cdot \dfrac{1}{\left | A \right |} \\
&= 4 \cdot \dfrac{1}{-2} \\
&= -2
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(A)\ -2$
4. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui matriks $B=\begin{pmatrix}
2 & -1\\
-3 & 2
\end{pmatrix}$ dan $C=\begin{pmatrix}
-7 & 2\\
0 & 4
\end{pmatrix}$. Jika matriks $A$ berukuran $2 \times 2$ dan memenuhi persamaan $A^{3}+B=C$, maka determinan matriks $3 A^{-1}$ adalah...
$\begin{align}
(A)\ & -3 \\
(B)\ & -2 \\
(C)\ & -1 \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
Berdasarkan informasi pada penjumlahan matriks soal di atas dan menggunakan sifat determinan matriks yaitu $ |k \times A_{m\times m}| = k^m \times |A|$, maka berlaku:
$\begin{align}
A^{3}+B &= C \\
A^{3} &= C-B \\
&= \begin{pmatrix}
-7 & 2\\
0 & 4
\end{pmatrix} - \begin{pmatrix}
2 & -1\\
-3 & 2
\end{pmatrix} \\
&= \begin{pmatrix}
-7-2 & 2-(-1)\\
0+3 & 4-2
\end{pmatrix} \\
&= \begin{pmatrix}
-9 & 3 \\
3 & 2
\end{pmatrix} \\
\hline
\left| A^{3} \right| &= (-9)(2)-(3)(3) \\
\left| A \right|^{3} &= -27 \\
\left| A \right| &= -3 \\
\hline
\left| 3 A^{-1} \right| &= 3^{2} \cdot \left| A^{-1} \right| \\
&= 9 \cdot \dfrac{1}{-3} \\
&= -3
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(A)\ -3$
5. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui matriks $A=\begin{pmatrix}
2 & 1\\
3 & 5
\end{pmatrix}$ mempunyai hubungan dengan matriks $B=\begin{pmatrix}
-5 & 3\\
1 & -2
\end{pmatrix}$. Matriks $C=\begin{pmatrix}
3 & 2\\
1 & -5
\end{pmatrix}$ dan matriks $D$ mempunyai hubungan yang serupa dengan $A$ dan $B$. Bentuk $C+D=\cdots$
$\begin{align}
(A)\ & \begin{pmatrix}
8 & 3\\
3 & -8
\end{pmatrix} \\
(B)\ & \begin{pmatrix}
8 & 3\\
3 & -2
\end{pmatrix} \\
(C)\ & \begin{pmatrix}
5 & 1\\
2 & -3
\end{pmatrix} \\
(D)\ & \begin{pmatrix}
3 & -2\\
-1 & -5
\end{pmatrix} \\
(E)\ & \begin{pmatrix}
-3 & 2\\
1 & 5
\end{pmatrix}
\end{align}$
Hubungan matriks:
$\begin{align}
A & \Leftrightarrow B \\
\begin{pmatrix}
2 & 1\\
3 & 5
\end{pmatrix} & \Leftrightarrow \begin{pmatrix}
-5 & 3\\
1 & -2
\end{pmatrix}
\end{align} $
Jika kita perhatikan hubungan kedua matriks di atas adalah unsur-unsur pada diagonal utama bertukar tempat lalu dikalikan dengan $-1$ dan unsur-unsur pada diagonal samping bertukar tempat.
$\begin{align}
C & \Leftrightarrow D \\
\begin{pmatrix}
3 & 2\\
1 & -5
\end{pmatrix} & \Leftrightarrow \begin{pmatrix}
5 & 1\\
2 & -3
\end{pmatrix}\\
\hline
C + D &=
\begin{pmatrix}
3 & 2\\
1 & -5
\end{pmatrix}+\begin{pmatrix}
5 & 1\\
2 & -3
\end{pmatrix}\\
&=
\begin{pmatrix}
8 & 3\\
3 & -8
\end{pmatrix}
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(A)\ \begin{pmatrix}
8 & 3\\
3 & -8
\end{pmatrix}$
6. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui sistem persamaan:
$\left\{\begin{matrix}
sin\left ( x+y \right )=1+\dfrac{1}{5}cos\ y\\
sin\left ( x-y \right )=-1+cos\ y\\
\end{matrix}\right.$
dengan $0 \lt y \lt \dfrac{\pi}{2}$. maka $cos\ 2x=\cdots$
$\begin{align}
(A)\ & \dfrac{7}{25} \\
(B)\ & \dfrac{7}{24} \\
(C)\ & -\dfrac{7}{25} \\
(D)\ & -\dfrac{7}{24} \\
(E)\ & -\dfrac{17}{25}
\end{align}$
Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:
- $sin\left ( A+B \right )=sin\ A\ cos\ B + sin\ B\ cos\ A$
- $sin\left ( A-B \right )=sin\ A\ cos\ B - sin\ B\ cos\ A$
- $cos\ 2A = 1 - 2\ sin^{2}A$
sin\left ( x+y \right ) &=1+\dfrac{1}{5}cos\ y\\
sin\left ( x-y \right ) &=-1+cos\ y\\
\hline
sin\ x\ cos\ y + sin\ y\ cos\ x &=1+\dfrac{1}{5}cos\ y\\
sin\ x\ cos\ y - sin\ y\ cos\ x &=-1+cos\ y\ [+] \\
\hline
2\ sin\ x\ cos\ y &= \dfrac{6}{5}\ cos\ y \\
2\ sin\ x &= \dfrac{6}{5} \\
sin\ x &= \dfrac{3}{5} \\
\hline
cos\ 2x &= 1 - 2\ sin^{2}x \\
&= 1 - 2\ \left( \dfrac{3}{5} \right)^{2} \\
&= 1 - 2\ \cdot \dfrac{9}{25} \\
&= 1 - \dfrac{18}{25} \\
&= \dfrac{7}{25}
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(A)\ \dfrac{7}{25}$
7. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui sistem persamaan:
$\left\{\begin{matrix}
cos\ 2x+cos\ 2y= \dfrac{2}{5} \\
sin\ x=2\ sin\ y\\
\end{matrix}\right.$
Untuk $x \gt 0 $ dan $y \gt \pi$. Nilai $3\ sin\ x-5\ sin\ y=\cdots$
$\begin{align}
(A)\ & -\dfrac{3}{5} \\
(B)\ & -\dfrac{2}{5} \\
(C)\ & 0 \\
(D)\ & \dfrac{2}{5} \\
(E)\ & \dfrac{3}{5}
\end{align}$
Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:
- $cos \left ( 2A \right )=cos^{2} A-sin^{2} A$
- $sin^{2} A+cos^{2} A=1$
cos\ 2x+cos\ 2y &= \dfrac{2}{5} \\
cos^{2} x-sin^{2} x+cos^{2} y-sin^{2} y &= \dfrac{2}{5} \\
1-sin^{2} x-sin^{2} x+1-sin^{2} y-sin^{2} y &= \dfrac{2}{5} \\
2-2sin^{2} x-2sin^{2} y &= \dfrac{2}{5} \\
-2\left( 2\ sin\ y \right)^{2}-2sin^{2} y &= \dfrac{2}{5}-2 \\
-8\ sin^{2} y -2sin^{2} y &= -\dfrac{8}{5} \\
-10\ sin^{2} y &= -\dfrac{8}{5} \\
sin^{2} y &= \dfrac{4}{25} \\
sin\ y &= \pm \sqrt{\dfrac{4}{25}} \\
sin\ y &= \pm \dfrac{2}{5} \\
\hline
\text{karena}\ y \gt \pi\ & \text{maka}\ sin\ y = -\dfrac{2}{5} \\
\hline
3\ sin\ x-5\ sin\ y &= 3 \cdot 2\ sin\ y - 5 \cdot -\dfrac{2}{5} \\
&= 3 \cdot 2\ \cdot -\dfrac{2}{5} + 2 \\
&= \dfrac{-12}{5}+2 \\
&= -\dfrac{2}{5}
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(B)\ -\dfrac{2}{5}$
8. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui sistem persamaan:
$\left\{\begin{matrix}
cos\left ( a-b \right )=\dfrac{4}{5}sin\left ( a+b \right )\\
sin\ 2a+sin\ 2b=\dfrac{9}{10} \\
\end{matrix}\right.$
Nilai dari $sin\left ( a+b \right )=\cdots$
$\begin{align}
(A)\ & \dfrac{5}{7} \\
(B)\ & \dfrac{7}{10} \\
(C)\ & \dfrac{2}{5} \\
(D)\ & \dfrac{3}{4} \\
(E)\ & \dfrac{3}{5}
\end{align}$
Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:
- $sin\ A+ sin\ B=2\ sin\ \left (\dfrac{A+B}{2}\right )\ cos\ \left (\dfrac{A-B}{2}\right ) $
- $cos\left ( A-B \right )=cos\ A\ cos\ B + sin\ A\ sin\ B$
sin\ 2a+sin\ 2b &= \dfrac{9}{10} \\
2\ sin\ \left (\dfrac{2a+2b}{2}\right )\ cos\ \left (\dfrac{2a-2b}{2}\right ) &= \dfrac{9}{10} \\
2\ sin\ \left( a+b \right)\ cos\ \left( a-b \right) &= \dfrac{9}{10} \\
sin\ \left( a+b \right)\ cos\ \left( a-b \right) &= \dfrac{9}{20} \\
sin\ \left( a+b \right)\ \cdot \dfrac{4}{5}sin\left ( a+b \right ) &= \dfrac{9}{20} \\
sin^{2} \left( a+b \right) &= \dfrac{9}{20} \cdot \dfrac{5}{4}\\
sin \left( a+b \right) &= \pm \sqrt{ \dfrac{9}{16}} \\
&= \pm \dfrac{3}{4}
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(D)\ \dfrac{3}{4}$
9. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui:
$\left\{\begin{matrix}
x =cos\ A - 2 sin\ B\\
y =sin\ A + 2 cos\ B
\end{matrix}\right.$
Nilai minimum dari $x^{2}+y^{2}=\cdots$
$\begin{align}
(A)\ & 1 \\
(B)\ & 2 \\
(C)\ & 3 \\
(D)\ & 5 \\
(E)\ & 7
\end{align}$
Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:
- $sin^{2} A+cos^{2} A=1$
- $sin\left ( A-B \right )=sin\ A\ cos\ B - sin\ B\ cos\ A$
x &=cos\ A - 2 sin\ B \\
y &=sin\ A + 2 cos\ B \\
\hline
x^{2} &=cos^{2}\ A + 4 sin^{2} B-4\ cos\ A\ sin\ B \\
y^{2} &=sin^{2}\ A + 4 cos^{2} B+4\ sin\ A\ cos\ B \, \, [+]\\
\hline
x^{2}+y^{2} &=1 + 4 -4\ cos\ A\ sin\ B+4\ sin\ A\ cos\ B \\
&=5 +4 \left( sin\ A\ cos\ B - cos\ A\ sin\ B \right) \\
&=5 +4 sin\left ( A-B \right )
\end{align} $
Nilai minimum $x^{2}+y^{2}$ terjadi saat $sin\left ( A-B \right )=-1$ minimum, sehingga nilai minimum $x^{2}+y^{2}=5 +4 \left ( -1 \right )=5-4=1$
$\therefore$ Pilihan yang sesuai adalah $(A)\ 1$
10. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui:
$\left\{\begin{matrix}
x =sin\ \alpha + \sqrt{3}\ sin\ \beta \\
y =cos\ \alpha + \sqrt{3}\ cos\ \beta
\end{matrix}\right.$
Nilai maximum dari $x^{2}+y^{2}$ adalah $a+b\sqrt{3}$. Nilai $a+b=\cdots$
$\begin{align}
(A)\ & 4 \\
(B)\ & 5 \\
(C)\ & 6 \\
(D)\ & 7 \\
(E)\ & 8
\end{align}$
Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:
- $sin^{2} A+cos^{2} A=1$
- $cos\left ( A-B \right )=cos\ A\ cos\ B + sin\ A\ sin\ B$
x &= sin\ \alpha + \sqrt{3}\ sin\ \beta \\
y &= cos\ \alpha + \sqrt{3}\ cos\ \beta \\
\hline
x^{2} &= sin^{2} \alpha +3\ sin^{2} \beta+2\sqrt{3}\ sin\ \alpha\ sin\ \beta \\
y^{2} &= cos^{2} \alpha +3\ cos^{2} \beta+2\sqrt{3}\ cos\ \alpha\ cos\ \beta \, \, [+]\\
\hline
x^{2}+y^{2} &=1 + 3 +2\sqrt{3}\ sin\ \alpha\ sin\ \beta+2\sqrt{3}\ cos\ \alpha\ cos\ \beta \\
&=4 +2\sqrt{3} \left( sin\ \alpha\ sin\ \beta+cos\ \alpha\ cos\ \beta \right) \\
&=4 +2\sqrt{3}\ cos\left ( \alpha-\beta \right ) \\
\end{align} $
Nilai maximum $x^{2}+y^{2}$ terjadi saat $cos\left ( \alpha-\beta \right )=1$ maximum, sehingga nilai maximum $x^{2}+y^{2} =4 +2\sqrt{3}(1)$.
Nilai $a+b\sqrt{3}=4+2\sqrt{3}$, maka $a+b=4+2=6$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 6$
11. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui sistem persamaan:
$\left\{\begin{matrix}
a =sin\ x + cos\ y\\
b =cos\ x - sin\ y
\end{matrix}\right.$
Nilai miaximum dari $4a^{2}+4b^{2}+4$ adalah...
$\begin{align}
(A)\ & 16 \\
(B)\ & 20 \\
(C)\ & 24 \\
(D)\ & 28 \\
(E)\ & 32
\end{align}$
Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:
- $sin^{2} A+cos^{2} A=1$
- $sin\left ( A-B \right )=sin\ A\ cos\ B - sin\ B\ cos\ A$
a &=sin\ x + cos\ y\\
b &=cos\ x - sin\ y \\
\hline
a^{2} &=sin^{2}\ x + cos^{2} y+2\ sin\ x\ cos\ y \\
b^{2} &=cos^{2}\ x + sin^{2} y-2\ cos\ x\ sin\ y \, \, [+]\\
\hline
a^{2}+b^{2} &=1 + 1+2\ sin\ x\ cos\ y -2\ cos\ x\ sin\ y \\
&=2+2\ \left( sin\ x\ cos\ y - cos\ x\ sin\ y \right) \\
&=2 +2\ sin\left ( x-y \right ) \\
\end{align} $
Nilai maximum $a^{2}+b^{2}$ terjadi saat $sin\left ( x-y \right )=1$ maximum, sehingga nilai maximum $a^{2}+b^{2}=2 +2 \left ( 1 \right )=4$
Nilai maximum $4a^{2}+4b^{2}+4$ terjadi saat $a^{2}+b^{2}$ maximum, sehingga nilai maximum $4a^{2}+4b^{2}+4$ adalah:
$\begin{align}
4a^{2}+4b^{2}+4 &= 4 \left( a^{2}+ b^{2} \right)+4 \\
&= 4 \left( 4 \right)+4 \\
&= 20
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(B)\ 20$
12. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika $(x,y)$ dengan $0 \lt x,\ y \lt \dfrac{\pi}{2}$, merupakan penyelesaian dari sistem persamaan:
$\left\{\begin{matrix}
cos\ 2x+cos\ 2y= -\dfrac{2}{5} \\
cos\ y=2\ cos\ x\\
\end{matrix}\right.$
maka $cos\ x+cos\ y=\cdots$
$\begin{align}
(A)\ & -\dfrac{6}{5} \\
(B)\ & -\dfrac{3}{5} \\
(C)\ & 0 \\
(D)\ & \dfrac{3}{5} \\
(E)\ & \dfrac{6}{5}
\end{align}$
Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:
- $cos \left ( 2A \right )=cos^{2} A-sin^{2} A$
- $cos \left ( 2A \right )=2cos^{2} A-1$
cos\ 2x+cos\ 2y &= -\dfrac{2}{5} \\
2cos^{2} x-1+2cos^{2} y-1 &= -\dfrac{2}{5} \\
2cos^{2} x +2cos^{2} y &= -\dfrac{2}{5}+2 \\
2cos^{2} x +2 \left(2 cos\ x \right)^{2} &= \dfrac{8}{5} \\
2cos^{2} x +8 cos^{2}x &= \dfrac{8}{5} \\
10 cos^{2}x &= \dfrac{8}{5} \\
cos^{2}x &= \dfrac{8}{5} \cdot \dfrac{1}{10} \\
cos\ x &= \pm \sqrt{ \dfrac{4}{25}} \\
cos\ x &= \pm \dfrac{2}{5} \\
\hline
\text{karena}\ 0 \lt x,\ y \lt \dfrac{\pi}{2}\ & \text{maka}\ cos\ x = \dfrac{2}{5} \\
\hline
cos\ x + cos\ y &= \dfrac{2}{5} + 2 \cdot \dfrac{2}{5} \\
&= \dfrac{2}{5} + \dfrac{4}{5} = \dfrac{6}{5}
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(E)\ \dfrac{6}{5}$
13. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui:
$\left\{\begin{matrix}
x =sin\ \alpha - sin\ \beta \\
y =cos\ \alpha + cos\ \beta
\end{matrix}\right.$
maka nilai terbesar dari $x^{2}+y^{2}$ adalah...
$\begin{align}
(A)\ & 4 \\
(B)\ & 5 \\
(C)\ & 6 \\
(D)\ & 7 \\
(E)\ & 8
\end{align}$
Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:
- $sin^{2} A+cos^{2} A=1$
- $cos\left ( A-B \right )=cos\ A\ cos\ B + sin\ A\ sin\ B$
x &= sin\ \alpha - sin\ \beta \\
y &= cos\ \alpha + cos\ \beta \\
\hline
x^{2} &= sin^{2} \alpha + sin^{2} \beta-2\ sin\ \alpha\ sin\ \beta \\
y^{2} &= cos^{2} \alpha + cos^{2} \beta-2\ cos\ \alpha\ cos\ \beta \, \, [+] \\
\hline
x^{2}+y^{2} &=1 + 1 +2\ sin\ \alpha\ sin\ \beta+2\ cos\ \alpha\ cos\ \beta \\
&=2 +2\ \left( sin\ \alpha\ sin\ \beta+ cos\ \alpha\ cos\ \beta \right) \\
&=2 +2\ cos\left ( \alpha-\beta \right ) \\
\end{align} $
Nilai terbesar $x^{2}+y^{2}$ terjadi saat $cos\left ( \alpha-\beta \right )=1$ terbesar, sehingga nilai terbesar $x^{2}+y^{2} =2 +2(1)=4$.
$\therefore$ Pilihan yang sesuai adalah $(D)\ 4$
14. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui $0 \lt x,y \lt \pi $, $\dfrac{\pi}{2} \lt x-y \lt \pi $, memenuhi:
$\left\{\begin{matrix}
2sin\ x+cos\ y =2\\
2cos\ x-sin\ y =\sqrt{3}\\
\end{matrix}\right.$
adalah...
$\begin{align}
(A)\ & \dfrac{1}{2}\sqrt{3} \\
(B)\ & \dfrac{1}{2} \\
(C)\ & 0 \\
(D)\ & -\dfrac{1}{2} \\
(E)\ & -\dfrac{1}{2}\sqrt{3}
\end{align}$
Catatan calon guru tentang trigonometri yang mungkin dibutuhkan adalah:
- $sin^{2} A+cos^{2} A=1$
- $sin\left ( A-B \right )=sin\ A\ cos\ B - sin\ B\ cos\ A$
2sin\ x+cos\ y &=2\\
2cos\ x-sin\ y &=\sqrt{3}\\
\hline
4sin^{2}\ x +cos^{2} y+4\ sin\ x\ cos\ y &=4\\
4cos^{2}\ x +sin^{2} y-4\ cos\ x\ sin\ y &=3\, \, [+]\\
\hline
4+1+4\ sin\ x\ cos\ y\ - 4\ cos\ x\ sin\ y &= 7 \\
4\left( sin\ x\ cos\ y\ - cos\ x\ sin\ y \right) &= 7-5 \\
4\ sin\ \left( x-y \right) &= 2 \\
sin\ \left( x-y \right) &= \dfrac{2}{4}=\dfrac{1}{2} \\
\end{align} $
$\begin{align}
sin^{2}A +cos^{2}A&=1\\
sin^{2}\left( x-y \right) +cos^{2}\left( x-y \right)&=1\\
\left( \dfrac{1}{2} \right)^{2} +cos^{2}\left( x-y \right)&=1\\
cos^{2}\left( x-y \right)&=1- \dfrac{1}{4} \\
cos \left( x-y \right) &=\pm \sqrt{\dfrac{3}{4}} \\
&=\pm \dfrac{1}{2}\sqrt{3}
\end{align} $
Karena $\dfrac{\pi}{2} \lt x-y \lt \pi $ maka $cos \left( x-y \right) = -\dfrac{1}{2}\sqrt{3}$
$\therefore$ Pilihan yang sesuai adalah $(E)\ -\dfrac{1}{2}\sqrt{3}$
15. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui $f(x)$ merupakan fungsi genap, Jika $\int \limits_{-4}^{4} f(x)\ dx = 16$, $\int \limits_{3}^{4} f(2x-2)\ dx = 11$ dan $\int \limits_{-5}^{-1} f(1-x)\ dx = 6$, maka $\int \limits_{0}^{2} f(x)\ dx = \cdots$
$ \begin{align}
(A)\ & 22 \\
(B)\ & 23 \\
(C)\ & 24 \\
(D)\ & 25 \\
(E)\ & 26
\end{align} $
Catatan calon guru yang mungkin bermanfaat tentang fungsi genap;
- Berlaku $f(-x)=f(x)$
- Bentuk grafik fungsi, simetris dengan pusat sumbu $y$
- Jika dipakai pada integral, ciri fungsi genap ini adalah $\int \limits_{-a}^{a} f(x)dx =2\int \limits_{0}^{a} f(x)dx $
\int \limits_{-4}^{4} f(x)\ dx = 16\ &\Rightarrow\ 2 \int \limits_{0}^{4} f(x)\ dx = 16 \\
\int \limits_{0}^{4} f(x)\ dx = 8\ &\Rightarrow\ \left | F(x) \right | _{0}^{4} = 8 \\
F(4)-F(0) = 8\ &\Rightarrow\ \int \limits_{0}^{4} f(x)\ dx = 8 \\
\hline
\int \limits_{3}^{4} f(2x-2)\ dx = 11\ &\Rightarrow\ \dfrac{1}{2} \cdot \left | F(2x-2) \right | _{3}^{4} = 11 \\
\dfrac{1}{2} \cdot \left( F(6)-F(4) \right) & = 11 \\
F(6)-F(4) = 22\ &\Rightarrow\ \int \limits_{4}^{6} f(x)\ dx = 22 \\
\hline
\int \limits_{-5}^{-1} f(1-x)\ dx = 6\ &\Rightarrow\ \dfrac{1}{-1} \cdot \left | F(1-x) \right | _{-5}^{-1} = 6 \\
F(2)-F(6) & = -6 \\
F(6)-F(2) = 6\ &\Rightarrow\ \int \limits_{2}^{6} f(x)\ dx = 6 \\
\end{align}$
Dari persamaan yang kita peroleh di atas dan sifat integral tentu, dapat kita simpulkan:
$\begin{align}
\int \limits_{0}^{2} f(x)\ dx + \int \limits_{2}^{6} f(x)\ dx &= \int \limits_{0}^{4} f(x)\ dx + \int \limits_{4}^{6} f(x)\ dx \\
\int \limits_{0}^{2} f(x)\ dx + 6 &= 8 + 22 \\
\int \limits_{0}^{2} f(x)\ dx &= 30-6 \\
&= 24 \\
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C) \ 24$
16. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Fungsi $f(x)$ memenuhi $f(x)=f(-x)$. Jika nilai $\int \limits_{-3}^{3} f(x)\ dx = 6$, $\int \limits_{2}^{3} f(x)\ dx = 1$, maka nilai $\int \limits_{0}^{2} f(x)\ dx = \cdots$
$ \begin{align}
(A)\ & 1 \\
(B)\ & 2 \\
(C)\ & 3 \\
(D)\ & 4 \\
(E)\ & 6
\end{align} $
Catatan calon guru yang mungkin bermanfaat tentang fungsi genap;
- Berlaku $f(-x)=f(x)$
- Bentuk grafik fungsi, simetris dengan pusat sumbu $y$
- Jika dipakai pada integral, ciri fungsi genap ini adalah $\int \limits_{-a}^{a} f(x)dx =2\int \limits_{0}^{a} f(x)dx $
$\begin{align}
\int \limits_{-3}^{3} f(x)\ dx = 6\ &\Rightarrow \ 2 \int \limits_{0}^{3} f(x)\ dx = 6 \\
\int \limits_{0}^{3} f(x)\ dx = 3\ &\Rightarrow \ \left | F(x) \right | _{0}^{3} = 3 \\
F(3)-F(0) = 3 \ &\Rightarrow\ \int \limits_{0}^{3} f(x)\ dx = 3 \\
\hline
\int \limits_{2}^{3} f(x)\ dx &= 1
\end{align}$
Dari persamaan yang kita peroleh di atas dan sifat integral tentu, dapat kita simpulkan:
$\begin{align}
\int \limits_{0}^{2} f(x)\ dx + \int \limits_{2}^{3} f(x)\ dx &= \int \limits_{0}^{3} f(x)\ dx \\
\int \limits_{0}^{2} f(x)\ dx + 1 &= 3 \\
\int \limits_{0}^{2} f(x)\ dx &= 3-1 =2
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B) \ 2$
17. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika nilai $\int \limits_{b}^{a} f(x)\ dx = 5$ dan $\int \limits_{c}^{a} f(x)\ dx = 0$, maka $\int \limits_{c}^{b} f(x)\ dx = \cdots$
$ \begin{align}
(A)\ & -5 \\
(B)\ & -3 \\
(C)\ & 0 \\
(D)\ & 4 \\
(E)\ & 6
\end{align} $
Catatan calon guru yang mungkin bermanfaat tentang sifat integral tentu;
- $\int \limits_{a}^{b} f(x)\ dx = -\int \limits_{b}^{a} f(x)\ dx$
- $\int \limits_{a}^{b} f(x)\ dx + \int \limits_{b}^{c} f(x)\ dx = \int \limits_{a}^{c} f(x)\ dx$
\int \limits_{b}^{a} f(x)\ dx = 5\ &\Rightarrow\ \int \limits_{a}^{b} f(x)\ dx = -5 \\
\int \limits_{c}^{a} f(x)\ dx = 0\ &\Rightarrow\ \int \limits_{a}^{c} f(x)\ dx = 0 \\
\hline
\int \limits_{c}^{b} f(x)\ dx & = \int \limits_{c}^{a} f(x)\ dx +\int \limits_{a}^{b} f(x)\ dx \\
& = 0 + -5 \\
& = -5
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(A) \ -5$
18. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Misalkan fungsi $f$ memenuhi $f(x+5)=f(x)$ untuk setiap $x \in R$. Jika $\int \limits_{1}^{5} f(x)\ dx = 3$ dan $\int \limits_{-5}^{-4} f(x)\ dx =-2$ maka nilai $\int \limits_{5}^{15} f(x)\ dx = \cdots$
$ \begin{align}
(A)\ & 10 \\
(B)\ & 6 \\
(C)\ & 5 \\
(D)\ & 2 \\
(E)\ & 1
\end{align} $
Catatan calon guru yang mungkin bermanfaat tentang sifat integral tentu;
- $\int \limits_{a}^{b} f(x)\ dx + \int \limits_{b}^{c} f(x)\ dx = \int \limits_{a}^{c} f(x)\ dx$
- Jika $f$ periodik dengan periode $p$, maka $\int \limits_{a+p}^{b+p} f(x)dx =\int \limits_{a }^{b } f(x)dx$
$'$Suatu fungsi $f$ adalah periodik jika terdapat suatu bilangan $p$ sedemikian sehingga $f(x+p)=f(x)$$'$
- $\int \limits_{1}^{5} f(x)\ dx = \int \limits_{6}^{10} f(x)\ dx = \int \limits_{11}^{15} f(x)\ dx = 3$
- $\int \limits_{-5}^{-4} f(x)\ dx=\int \limits_{0}^{1} f(x)\ dx = \int \limits_{5}^{6} f(x)\ dx =\int \limits_{10}^{11} f(x)\ dx =-2$;
$\begin{align}
\int \limits_{5}^{15} f(x) dx &= \int \limits_{5}^{6} f(x) dx+\int \limits_{6}^{10} f(x) dx+\int \limits_{10}^{11} f(x) dx+\int \limits_{11}^{15} f(x) dx \\
&= -2+3+(-2)+3 \\
&= 2
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D) \ 2$
19. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui $f(-x)=f(x)-3$ dan $x \gt 0$. Jika $\int \limits_{1}^{5} f(x)\ dx = 2$ dan $\int \limits_{3}^{5} f(x)\ dx = -3$ maka $\int \limits_{-3}^{-1} f(x)\ dx = \cdots$
$ \begin{align}
(A)\ & -19 \\
(B)\ & -1 \\
(C)\ & 0 \\
(D)\ & 1 \\
(E)\ & 19
\end{align} $
Catatan calon guru yang mungkin bermanfaat tentang integral tentu;
- $\int \limits_{a}^{b} f(x)\ dx = -\int \limits_{b}^{a} f(x)\ dx$
- $\int \limits_{a}^{b} f(x)\ dx + \int \limits_{b}^{c} f(x)\ dx = \int \limits_{a}^{c} f(x)\ dx$
$\begin{align}
\int \limits_{1}^{5} f(x)\ dx &= \int \limits_{1}^{5} \left( f(-x)+3 \right) dx \\
2 &= \int \limits_{1}^{5} f(-x) dx + \int \limits_{1}^{5} 3\ dx \\
2 - \int \limits_{1}^{5} 3\ dx &= \int \limits_{1}^{5} f(-x) dx \\
2 - \left | 3x \right | _{1}^{5} &= \dfrac{1}{-1} \cdot \left | F(-x) \right | _{1}^{5} \\
2 - (15 -3) &= (-1) \cdot \left( F(-5)-F(-1) \right) \\
-10 &= (-1) \cdot \int \limits_{-1}^{-5} f(x)\ dx \\
-10 &= \int \limits_{-5}^{-1} f(x)\ dx \\
\hline
\int \limits_{3}^{5} f(x)\ dx &= \int \limits_{3}^{5} \left( f(-x)+3 \right) dx \\
-3 &= \int \limits_{3}^{5} f(-x) dx + \int \limits_{3}^{5} 3\ dx \\
-3 - \int \limits_{3}^{5} 3\ dx &= \int \limits_{3}^{5} f(-x) dx \\
-3 - \left | 3x \right | _{3}^{5} &= \dfrac{1}{-1} \cdot \left | F(-x) \right | _{3}^{5} \\
-3 - (15 -9) &= (-1) \cdot \left( F(-5)-F(-3) \right) \\
-9 &= (-1) \cdot \int \limits_{-3}^{-5} f(x)\ dx \\
-9 &= \int \limits_{-5}^{-3} f(x)\ dx
\end{align}$
Dari persamaan yang kita peroleh di atas dan sifat integral tentu, dapat kita simpulkan:
$\begin{align}
\int \limits_{-3}^{-1} f(x)\ dx &= \int \limits_{-3}^{-5} f(x)\ dx + \int \limits_{-5}^{-1} f(x)\ dx \\
&= 9 - 10 \\
&= -1
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B) \ -1$
20. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui fungsi $f(x)$ adalah fungsi genap, Jika nilai $\int \limits_{-5}^{5} \left( f(x)+3x^{2} \right) dx = 260$ dan $\int \limits_{2}^{4} f(x) dx = 2$ maka nilai $\int \limits_{0}^{2} f(x)\ dx+\int \limits_{4}^{5} f(x)\ dx = \cdots$
$ \begin{align}
(A)\ & -7 \\
(B)\ & -3 \\
(C)\ & 0 \\
(D)\ & 3 \\
(E)\ & 7
\end{align}$
Catatan calon guru yang mungkin bermanfaat tentang sifat integral tentu;
- Berlaku $f(-x)=f(x)$
- Bentuk grafik fungsi, simetris dengan pusat sumbu $y$
- Jika dipakai pada integral, ciri fungsi genap ini adalah $\int \limits_{-a}^{a} f(x)dx =2\int \limits_{0}^{a} f(x)dx $
$\begin{align}
\int \limits_{-5}^{5} \left( f(x)+3x^{2} \right) dx &= 260 \\
2 \cdot \int \limits_{0}^{5} \left( f(x)+3x^{2} \right) dx &= 260 \\
\int \limits_{0}^{5} \left( f(x)+3x^{2} \right) dx &= 130 \\
\int \limits_{0}^{5} f(x)\ dx + \int \limits_{0}^{5} 3x^{2}\ dx &= 130 \\
\int \limits_{0}^{5} f(x)\ dx + \left | x^{3} \right | _{0}^{5} &= 130 \\
\int \limits_{0}^{5} f(x)\ dx +125 &= 130 \\
\int \limits_{0}^{5} f(x) &= 5
\end{align}$
$\begin{align}
\int \limits_{0}^{5} f(x)\ dx &= \int \limits_{0}^{2} f(x)\ dx +\int \limits_{2}^{4} f(x)\ dx +\int \limits_{4}^{5} f(x)\ dx \\
5 &= \int \limits_{0}^{2} f(x)\ dx + 2 +\int \limits_{4}^{5} f(x)\ dx \\
5-2 &= \int \limits_{0}^{2} f(x)\ dx +\int \limits_{4}^{5} f(x)\ dx \\
3 &= \int \limits_{0}^{2} f(x)\ dx +\int \limits_{4}^{5} f(x)\ dx
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D) \ 3$
21. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui sistem persamaan
$\left\{\begin{matrix}
y=-mx+c\\
y= \left ( x+4 \right )^{2}
\end{matrix}\right.$
Jika sistem persamaan tersebut memiliki tepat satu penyelesaian, maka jumlah semua nilai $m$ adalah...
$\begin{align}
(A)\ & -32 \\
(B)\ & -20 \\
(C)\ & -16 \\
(D)\ & -8 \\
(E)\ & -4
\end{align}$
Karena sistem persamaan di atas memiliki tepat satu penyelesaian maka diskriminan $(D=b^{2}-4ac)$ dari persekutuan persamaan kuadrat adalah nol.
$\begin{align}
y & = y \\
\left ( x+4 \right )^{2} & = -mx+c \\
x^{2}+8x+16 +mx -c & = 0 \\
x^{2}+(8+m)x+16-c & = 0 \\
b^{2}-4ac & = 0 \\
(8+m)^{2} -4(1)(16-c) & = 0 \\
m^{2}+16m+64-64+4c & = 0 \\
m^{2}+16m+4c & = 0 \\
m_{1} + m_{2} & = -\dfrac{b}{a}\\
&=-\dfrac{16}{1}=-16
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(C)\ -16$
22. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika $(a,b)$ solusi dari sistem persamaan kuadrat
$\left\{\begin{matrix}
x^{2}+y^{2}-2x=19\\
x+y^{2}=1
\end{matrix}\right.$
maka nilai $a+4b$ yang terbesar adalah...
$\begin{align}
(A)\ & 4 \\
(B)\ & 5 \\
(C)\ & 10 \\
(D)\ & 11 \\
(E)\ & 14
\end{align}$
Dari sistem persamaan dapat kita peroleh nilai $a$ dan $b$, yaitu:
$\begin{align}
x^{2}+y^{2}-2x &=19 \\
x^{2}+(1-x)-2x &=19 \\
x^{2}-3x+-18 &= 0 \\
(x-6)(x+3) & = 0 \\
x=6\ \text{atau}\ x=-3 & \\
\hline
y^{2}=1-x & \\
\hline
x=6\ \Rightarrow\ & y^{2}=-5\ (imajiner) \\
x=-3\ \Rightarrow\ & y^{2}=4 \\
& y=2\ \text{atau}\ y=-2 \\
\hline
(-3,2)\ \Rightarrow\ & a+4b=5 \\
(-3,-2)\ \Rightarrow\ & a+4b=-11
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(B)\ 5$
23. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Himpunan $(x,y)$ adalah penyelesaian dari sistem persamaan
$\left\{\begin{matrix}
x^{2}+y^{2}=6\\
\dfrac{x^{2}}{2}+\dfrac{y^{2}}{8}=3
\end{matrix}\right.$
Jumlah dari semua nilai $x$ yang memenuhi adalah...
$\begin{align}
(A)\ & -2 \\
(B)\ & -1 \\
(C)\ & 0 \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
Dari sistem persamaan dapat kita peroleh nilai $a$ dan $b$, yaitu:
$\begin{align}
\dfrac{x^{2}}{2}+\dfrac{y^{2}}{8} &=3 \\
8x^{2} + 2y^{2} &=48 \\
8x^{2} + 2 \left( 6-x^{2} \right) &=48 \\
8x^{2} + 12-2x^{2}-48&=0 \\
6x^{2}- 36 &=0 \\
x^{2}- 6 &=0 \\
(x-\sqrt{6})(x+\sqrt{6}) &=0 \\
x=\sqrt{6}\ \text{atau}\ x=-\sqrt{6} & \\
\hline
y^{2}=6-x^{2} & \\
\hline
x=\sqrt{6}\ \Rightarrow\ & y^{2}=0 \\
x=-\sqrt{6}\ \Rightarrow\ & y^{2}=0 \\
\end{align}$
Jumlah semua nilai $x$ dan $y$ yang memenuhi adalah $0$
$ \therefore $ Pilihan yang sesuai adalah $(C)\ 0$
24. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui sistem persamaan
$\left\{\begin{matrix}
x^{2}+y^{2}+2y=8\\
x^{2}-y^{2}-2y+4x+8=0
\end{matrix}\right.$
Mempunyai solusi $(x,y)$ dengan $x$ dan $y$ bilangan real. Jumlah semua ordinatnya adalah...
$\begin{align}
(A)\ & 4 \\
(B)\ & 2 \\
(C)\ & 0 \\
(D)\ & -2 \\
(E)\ & -4
\end{align}$
Dari sistem persamaan dapat kita peroleh nilai $a$ dan $b$, yaitu:
$\begin{align}
x^{2}+y^{2}+2y &= 8 \\
x^{2} &= -y^{2}-2y+8 \\
\hline
x^{2}-y^{2}-2y+4x+8 &=0 \\
x^{2}+x^{2}+4x &=0 \\
2x^{2}+4x &=0 \\
x^{2}+2x &=0 \\
x(x+2) &=0 \\
x=0\ \text{atau}\ x=-2 & \\
\hline
x=0\ & \Rightarrow\ -y^{2}-2y+8=0 \\
& \Rightarrow\ y^{2}+2y-8=0 \\
& \Rightarrow\ y_{1}+y_{2} =-2 \\
\hline
x=-2\ & \Rightarrow\ -y^{2}-2y+8=4 \\
& \Rightarrow\ y^{2}+2y-4=0 \\
& \Rightarrow\ y_{1}+y_{2} =-2
\end{align}$
Jumlah semua ordinatnya adalah $(-2)+(-2)=-4$
$ \therefore $ Pilihan yang sesuai adalah $(E)\ -4$
25. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui
$\left\{\begin{matrix}
x^{2}+y^{2}-2y=13\\
x^{2}-y=1
\end{matrix}\right.$
maka nilai $x^{2}+2y$ adalah...
$\begin{align}
(A)\ & 10 \\
(B)\ & 11 \\
(C)\ & 12 \\
(D)\ & 13 \\
(E)\ & 14
\end{align}$
Dari sistem persamaan dapat kita peroleh nilai $a$ dan $b$, yaitu:
$\begin{align}
x^{2}+y^{2}-2y &=13 \\
y+1+y^{2}-2y &=13 \\
y^{2}-y -12&= 0 \\
(y-4)(y+3) & = 0 \\
y=4\ \text{atau}\ y=-3 & \\
\hline
x^{2}=y+1 & \\
\hline
y=4\ & \Rightarrow\ x^{2}=5 \\
& \rightarrow\ x^{2}+2y=13 \\
y=-3\ & \Rightarrow\ x^{2}=-2\ (imajiner) \\
& \rightarrow\ x^{2}+2y=-8
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(D)\ 13$
26. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika penyelesaian sistem persamaan
$\left\{\begin{matrix}
\left ( a+2 \right )x+y=0\\
x+\left ( a+2 \right )y=0
\end{matrix}\right.$
tidak hanya $(x,y)=(0,0)$ saja, maka nilai terbesar $a^{2}+3a+9=\cdots$
$\begin{align}
(A)\ & 7 \\
(B)\ & 9 \\
(C)\ & 11 \\
(D)\ & 13 \\
(E)\ & 27
\end{align}$
Dari sistem persamaan yang disampaiakn di atas yaitu penyelesaian sistem persamaan di atas lebih dari satu maka perbandingan koefisien variabel nilainya adalah sama.
sehingga dapat kita tuliskan:
$\begin{align}
\dfrac{a+2}{1} & = \dfrac{1}{a+2} \\
(a+2)(a+2) & = (1)(1) \\
a^{2}+4a +4 & = 1 \\
a^{2}+4a +3 & = 0 \\
(a+1)(a+3) & = 0 \\
a=-1\ & \text{atau}\ a=-3 \\
\hline
a=-1\ \rightarrow\ a^{2}+3a+9 & =1-3+9=7 \\
a=-3\ \rightarrow\ a^{2}+3a+9 & =9-9+9=9 \\
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(B)\ 9$
27. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui sistem persamaan
$\left\{\begin{matrix}
4^{x}+5^{y}=6 \\
4^{\frac{x}{y}} = 5
\end{matrix}\right.$
Nilai $\dfrac{1}{x}+\dfrac{1}{y}=\cdots$
$\begin{align}
(A)\ & {}^3\!\log 4 \\
(B)\ & {}^3\!\log 20 \\
(C)\ & {}^3\!\log 5 \\
(D)\ & {}^3\!\log 25 \\
(E)\ & {}^3\!\log 6
\end{align}$
Dari sistem persamaan yang disampaikan di atas, kita mungkin butuh sedikit catatan calaon guru tentang logaritma yaitu:
- ${}^a\!\log x\ +{}^a\!\log y={}^a\!\log \left (x\cdot y \right )$
- ${}^a\!\log x= \dfrac{1}{{}^x\!\log a} $
$\begin{align}
4^{x}+5^{y} &= 6 \\
5^{y}+5^{y} &= 6 \\
2 \cdot 5^{y} &= 6 \\
5^{y} &= 3 \\
{}^5\!\log 3= y \\
\hline
4^{x} &= 5^{y}\\
4^{x} &= 5^{{}^5\!\log 3}\\
4^{x} &= 3 \\
{}^4\!\log 3= x
\end{align}$
$\begin{align}
\dfrac{1}{x}+\dfrac{1}{y} &= \dfrac{1}{{}^4\!\log 3}+\dfrac{1}{{}^5\!\log 3} \\
&= {}^3\!\log 4 + {}^3\!\log 5 \\
&= {}^3\!\log (4 \cdot 5) \\
&= {}^3\!\log 20
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(B)\ {}^3\!\log 20$
28. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika $(a,b)$ solusi dari sistem persamaan
$\left\{\begin{matrix}
x^{2}+y^{2}=5 \\
x-y^{2}=1
\end{matrix}\right.$
maka nilai $a-3b$ yang terkecil adalah...
$\begin{align}
(A)\ & 5 \\
(B)\ & 1 \\
(C)\ & 0 \\
(D)\ & -1 \\
(E)\ & -5
\end{align}$
Dari sistem persamaan dapat kita peroleh nilai $a$ dan $b$, yaitu:
$\begin{align}
x^{2}+y^{2} &= 5 \\
x^{2}+(x-1) &= 5 \\
x^{2}+x-6 &= 0 \\
(x+3)(x-2) & = 0 \\
x=-3\ \text{atau}\ x=2 & \\
\hline
y^{2}=x-1 & \\
\hline
x=-3\ \Rightarrow\ & y^{2}=-4\ (imajiner) \\
x=2\ \Rightarrow\ & y^{2}=1 \\
& y=1\ \text{atau}\ y=-1 \\
\hline
(2,1)\ \Rightarrow\ & a-3b=-1 \\
(2,-1)\ \Rightarrow\ & a-3b=5
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(D)\ -1$
29. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui sistem persamaan
$\left\{\begin{matrix}
x^{2}+y=16\\
x^{2}+y^{2}-11y=-19
\end{matrix}\right.$
Mempunyai solusi $(x,y)$ dengan $x$ dan $y$ bilangan real. Jumlah semua ordinatnya adalah...
$\begin{align}
(A)\ & 12 \\
(B)\ & 10 \\
(C)\ & 35 \\
(D)\ & -10 \\
(E)\ & -12
\end{align}$
Dari sistem persamaan dapat kita peroleh:
$\begin{align}
x^{2}+y^{2}-11y &=-19 \\
16-y+y^{2}-11y &=-19 \\
y^{2}-12y+35 &=0 \\
\hline
y_{1}+y_{2} &= -\dfrac{b}{a} \\
&= -\dfrac{-12}{1}=12
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(A)\ 12$
30. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Penyelesaian dari pertidaksamaan $\left| 2x+1 \right| \lt 2 + \left| x+1 \right|$ adalah berbentuk interval $(a,b)$. Nilai $a+b+2=\cdots$
$\begin{align}
(A)\ & -3 \\
(B)\ & -2 \\
(C)\ & 0 \\
(D)\ & 2 \\
(E)\ & 3
\end{align}$
Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba mulai dari mencari batasan (pembuat nol) untuk setiap nilai mutlak. Pembuat nol ini untuk melihat batasan nilai $x$ karena nilai mutlak nilainya selalu lebih dari atau sama dengan nol.
$|x|=\left\{\begin{matrix}
x,\ \text{untuk}\ x\geq 0 \\
x,\ \text{untuk}\ x \lt 0
\end{matrix}\right.$
Batasan nilai $x$ yang kita peroleh dari $\left| x+1 \right|$ adalah $x=-1$ dan dari $\left| 2x+1 \right|$ adalah $x=-\dfrac{1}{2}$.
- Untuk $x \lt -1$, maka
$\begin{align}
\left| 2x+1 \right| - \left| x+1 \right| & \lt 2 \\
-\left( 2x+1 \right)-\left(- (x+1) \right) & \lt 2 \\
- 2x-1+x+1 & \lt 2 \\
- x & \lt 2 \\
x & \gt -2
\end{align}$
Irisan $x \lt -1$ dan $x \gt -2$ adalah $-2 \lt x \lt -1$
- Untuk $-1 \leq x \lt -\dfrac{1}{2}$, maka
$\begin{align}
\left| 2x+1 \right| - \left| x+1 \right| & \lt 2 \\
-\left( 2x+1 \right)-\left( x+1 \right) & \lt 2 \\
- 2x-1-x-1 & \lt 2 \\
- 3x-2 & \lt 2 \\
- 3x & \lt 4 \\
x & \gt -\dfrac{4}{3}
\end{align}$
Irisan $-1 \leq x \lt -\dfrac{1}{2}$ dan $x \gt -\dfrac{4}{3}$ adalah $-1 \leq x \lt -\dfrac{1}{2}$
- Untuk $x \leq -\dfrac{1}{2}$, maka
$\begin{align}
\left| 2x+1 \right| - \left| x+1 \right| & \lt 2 \\
\left( 2x+1 \right)-\left( x+1 \right) & \lt 2 \\
2x+1-x-1 & \lt 2 \\
x & \lt 2
\end{align}$
Irisan $x \leq -\dfrac{1}{2}$ dan $x \lt -2$ adalah $-\dfrac{1}{2} \leq x \lt 2$
$ \therefore $ Pilihan yang sesuai adalah $(D)\ 2$
31. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Himpunan penyelesaian dari $\left| x-1 \right| \lt 3 - \left| x \right|$ adalah interval $(a,b)$. Nilai $2a+b$ adalah...
$\begin{align}
(A)\ & -3 \\
(B)\ & -2 \\
(C)\ & 0 \\
(D)\ & 2 \\
(E)\ & 3
\end{align}$
Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba mulai dari mencari batasan (pembuat nol) untuk setiap nilai mutlak. Pembuat nol ini untuk melihat batasan nilai $x$ karena nilai mutlak nilainya selalu lebih dari atau sama dengan nol.
$|x|=\left\{\begin{matrix}
x,\ \text{untuk}\ x\geq 0 \\
x,\ \text{untuk}\ x \lt 0
\end{matrix}\right.$
Batasan nilai $x$ yang kita peroleh dari $\left| x-1 \right|$ adalah $x=1$ dan dari $\left| x \right|$ adalah $x=0$.
- Untuk $x \lt 0$, maka
$\begin{align}
\left| x-1 \right|+ \left| x \right| & \lt 3 \\
-\left( x-1 \right)+\left(- x \right) & \lt 3 \\
-x+1 -x & \lt 3 \\
- 2x & \lt 2 \\
x & \gt -1
\end{align}$
Irisan $x \lt 0$ dan $x \gt -1$ adalah $-1 \lt x \lt 0$
- Untuk $0 \leq x \lt 1$, maka
$\begin{align}
\left| x-1 \right|+ \left| x \right| & \lt 3 \\
-\left( x-1 \right)+ x & \lt 3 \\
- x+1 + x & \lt 3 \\
1 & \lt 3 \\
\text{selalu benar untuk}\ & x \in R
\end{align}$
Irisan $0 \leq x \lt 1$ dan $x \in R$ adalah $0 \leq x \lt 1$
- Untuk $x \geq 1$, maka
$\begin{align}
\left| x-1 \right|+ \left| x \right| & \lt 3 \\
x-1 + x & \lt 3 \\
2x-1 & \lt 3 \\
2x & \lt 4 \\
x & \lt 2
\end{align}$
Irisan $x \geq 1$ dan $x \lt 2$ adalah $1 \leq x \lt 2$
$ \therefore $ Pilihan yang sesuai adalah $(C)\ 0$
32. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika $(a,b)$ adalah interval dari penyelesaian pertidaksamaan $\left| x+2 \right|+ \left| x+4 \right| \lt 4$ maka nilai $a-b=\cdots$
$\begin{align}
(A)\ & -4 \\
(B)\ & -2 \\
(C)\ & 0 \\
(D)\ & 2 \\
(E)\ & 4
\end{align}$
Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba mulai dari mencari batasan (pembuat nol) untuk setiap nilai mutlak. Pembuat nol ini untuk melihat batasan nilai $x$ karena nilai mutlak nilainya selalu lebih dari atau sama dengan nol.
$|x|=\left\{\begin{matrix}
x,\ \text{untuk}\ x\geq 0 \\
x,\ \text{untuk}\ x \lt 0
\end{matrix}\right.$
Batasan nilai $x$ yang kita peroleh dari $\left| x+2 \right|$ adalah $x=-2$ dan dari $\left| x+4 \right|$ adalah $x=-4$.
- Untuk $x \lt -4$, maka
$\begin{align}
\left| x+2 \right|+ \left| x+4 \right| & \lt 4 \\
-\left( x+2 \right)+\left(- (x+4) \right) & \lt 4 \\
-x-2-x-4 & \lt 4 \\
-2x & \lt 4+6 \\
x & \gt -5
\end{align}$
Irisan $x \lt -4$ dan $x \gt -5$ adalah $-5 \lt x \lt -4$
- Untuk $-4 \leq x \lt -2$, maka
$\begin{align}
\left| x+2 \right|+ \left| x+4 \right| & \lt 4 \\
-\left( x+2 \right)+ \left( x+4 \right) & \lt 4 \\
- x-2 + x+4 & \lt 4 \\
2 & \lt 4 \\
\text{selalu benar untuk}\ & x \in R
\end{align}$
Irisan $-4 \leq x \lt -2$ dan $x \in R$ adalah $-4 \leq x \lt -2$
- Untuk $x \geq -2$, maka
$\begin{align}
\left| x+2 \right|+ \left| x+4 \right| & \lt 4 \\
\left( x+2 \right)+ \left( x+4 \right) & \lt 4 \\
2x+6 & \lt 4 \\
2x & \lt -2 \\
x & \lt -1
\end{align}$
Irisan $x \geq -2$ dan $x \lt -1$ adalah $-2 \leq x \lt -1$
$ \therefore $ Pilihan yang sesuai adalah $(A)\ -4$
33. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Himpunan penyelesaian dari pertidaksamaan $\left| 3 - |x+1| \right| \lt 2$ adalah
$(A)\ -5 \lt x \lt -2\ \text{atau}\ -1 \lt x \lt 4$
$(B)\ -6 \lt x \lt -2\ \text{atau}\ -1 \lt x \lt 4$
$(C)\ -5 \lt x \lt -2\ \text{atau}\ 0 \lt x \lt 5$
$(D)\ -6 \lt x \lt -2\ \text{atau}\ 0 \lt x \lt 4$
$(E)\ -5 \lt x \lt -2\ \text{atau}\ -1 \lt x \lt 5$
Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba dengan menggunakan $\sqrt{x^{2}}=\left| x \right|$.
$\begin{align}
\sqrt{\left(3- |x+1| \right)^{2}} & \lt \sqrt{2^{2}} \\
\left(3- |x+1| \right)^{2} & \lt 4 \\
\text{misal}\ a &= |x+1| \\
\left(3- a \right)^{2} & \lt 4 \\
a^{2}-6a+9-4 & \lt 0 \\
a^{2}-6a + 5 & \lt 0 \\
(a-5)(a-1) & \lt 0 \\
1 \lt a \lt 5 & \\
1 \lt |x+1| \lt 5 &
\end{align}$
Pertidaksamaan di atas kita kerjakan dalam dua tahap, yaitu:
\begin{array} \\
1 \lt |x+1| & \\
x+1 \lt -1\ \text{atau}\ x+1 \gt 1 & \\
x \lt -2\ \text{atau}\ x \gt 0 & \\
\hline
|x+1| \lt 5 & \\
-5 \lt x+1 \lt 5 & \\
-5-1 \lt x \lt 5-1 & \\
-6 \lt x \lt 4 &
\end{array}
Himpunan penyelesaian soal adalah irisan dari kedua pertidaksamaan, jika kita gambarkan ilustrasinya seperti berikut ini:
$ \therefore $ Pilihan yang sesuai adalah $(D)\ -6 \lt x \lt -2\ \text{atau}\ 0 \lt x \lt 4$
34. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Himpunan penyelesaian dari pertidaksamaan $\left| |x|+x \right| \leq 2$ adalah
$(A)\ 0 \leq x \lt 1$
$(B)\ x \leq 1$
$(C)\ x \leq 2$
$(D)\ x \leq 0$
$(E)\ x \geq 0$
Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba dengan menggunakan $\sqrt{x^{2}}=\left| x \right|$ dan defenisi nilai mutlak $|x|=\left\{\begin{matrix}
x,\ \text{untuk}\ x\geq 0 \\
x,\ \text{untuk}\ x \lt 0
\end{matrix}\right.$
$\begin{align}
\left| |x|+x \right| & \leq 2 \\
\sqrt{\left( |x|+x \right)^{2}} & \leq \sqrt{2^{2}} \\
\left( |x|+x \right)^{2} & \leq 4
\end{align}$
- Untuk $x \leq 0$, maka
$\begin{align}
\left( |x|+x \right)^{2} & \leq 4 \\
\left( x+x \right)^{2} & \leq 4 \\
4x^{2} & \leq 4 \\
x^{2}-1 & \leq 0 \\
(x+1)(x-1) & \leq 0 \\
-1 \leq x \leq 1 & \\
\end{align}$
Irisan $x \leq 0$ dan $-1 \leq x \leq 1$ adalah $0 \leq x \leq 1$
- Untuk $ x \lt 0$, maka
$\begin{align}
\left( |x|+x \right)^{2} & \leq 4 \\
\left( -x+x \right)^{2} & \leq 4 \\
0 & \leq 4 \\
\text{selalu benar untuk}\ & x \in R
\end{align}$
Irisan $ x \lt 0$ dan $x \in R$ adalah $x \lt 0$
$ \therefore $ Pilihan yang sesuai adalah $(B)\ x \leq 1$
35. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika semua nilai $x$ dengan $-1 \leq x \leq 3$ yang memenuhi $\left| x+2 \right|-\sqrt{4x+8} \leq 0$ adalah $a \leq x \leq b$, maka nilai $2a+b$ adalah...
$ \begin{align}
(A)\ & -2 \\
(B)\ & -1 \\
(C)\ & 0 \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba dengan menggunakan $\sqrt{x^{2}}=\left| x \right|$ dan defenisi nilai mutlak $|x|=\left\{\begin{matrix}
x,\ \text{untuk}\ x\geq 0 \\
x,\ \text{untuk}\ x \lt 0
\end{matrix}\right.$
Pertama kita mulai dari syarat fungsi $\sqrt{4x+8}$, agar bernilai real, maka $4x+8 \geq 0$ atau $x \geq -2$.
$\begin{align}
\left| x+2 \right|-\sqrt{4x+8} & \leq 0 \\
\sqrt{\left( x+2 \right)^{2}} & \leq \left(\sqrt{4x+8}\right)^{2} \\
x^{2}+4x+4 & \leq 4x+8 \\
x^{2}+4x+4-4x-8 & \leq 0 \\
x^{2}-4 & \leq 0 \\
(x-2)(x+2) & \leq 0 \\
-2 \leq x \leq 2 &
\end{align}$
Irisan $x \geq -2$ dan $-2 \leq x \leq 2$ adalah $-2 \leq x \leq 2$.
Karena nilai $x$ yang diminta adalah semua nilai $x$ pada $-1 \leq x \leq 3$ sehingga himpunan penyelesaian yang diminta adalah irisan dari $-1 \leq x \leq 3$ dan $-2 \leq x \leq 2$, yaitu:
$ \therefore $ Pilihan yang sesuai adalah $(C)\ 0$
36. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Himpunan penyelesaian pertidaksamaan $\dfrac{3x}{2-x} \lt 3$ adalah...
$\begin{align}
(A)\ & x \lt 1\ \text{atau}\ x \gt 2 \\
(B)\ & x \lt 2\ \text{atau}\ x \gt 6 \\
(C)\ & 1 \lt x \lt 2 \\
(D)\ & 1 \lt x \lt 6 \\
(E)\ & x \gt 2 \\
\end{align}$
Pertidaksamaan coba kita sederhanakan menjadi bentuk umum pertidaksamaan pecahan;
$\begin{align}
\dfrac{3x}{2-x} & \lt 3 \\
\dfrac{3x}{2-x}-3 & \lt 0 \\
\dfrac{3x}{x-2}+3 & \gt 0 \\
\dfrac{3x}{x-2}+\dfrac{3(x-2)}{x-2} & \gt 0 \\
\dfrac{3x+3x-6}{x-2} & \gt 0 \\
\dfrac{6x-6}{x-2} & \gt 0
\end{align}$
Syarat pertama dari pertidaksamaan pecahan adalah $x-2 \neq 0$ maka $x \neq 2$.
Berikutnya kita cari batas atau pembuat nol pada pembilang dan penyebut, yaitu:
- Pembuat nol pembilang: $6x-6=0$ maka $x=1$
- Pembuat nol penyebut: $x-2=0$ maka $x=2$
Jika dengan menggunakan titik uji, dapat kita kerjakan seperti berikut ini:
Pembuat nol kita gambarkan pada garis bilangan, lalu kita lakukan uji nilai (*coba perhatikan gambar)
$\therefore$ Pilihan yang sesuai adalah $(A)\ x \lt 1\ \text{atau}\ x \gt 2$
37. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Himpunan penyelesaian dari $\left| x+1 \right| \lt \dfrac{2}{x}$ adalah interval $(a,b)$. Nilai $2a+5b$ adalah...
$\begin{align}
(A)\ & -5 \\
(B)\ & -2 \\
(C)\ & 0 \\
(D)\ & 2 \\
(E)\ & 5
\end{align}$
Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba mulai dari mencari batasan (pembuat nol) untuk setiap nilai mutlak. Pembuat nol ini untuk melihat batasan nilai $x$ karena nilai mutlak nilainya selalu lebih dari atau sama dengan nol.
$|x|=\left\{\begin{matrix}
x,\ \text{untuk}\ x\geq 0 \\
x,\ \text{untuk}\ x \lt 0
\end{matrix}\right.$
Bentuk soal coba kita ubah menjadi:
$\begin{align}
\left| x+1 \right| & \lt \dfrac{2}{x} \\
\left| x+1 \right| - \dfrac{2}{x} & \lt 0 \\
\dfrac{x \left| x+1 \right|-2}{x} & \lt 0
\end{align}$
Batasan nilai $x$ yang kita peroleh dari $\left| x+1 \right|$ adalah $x=-1$.
- Untuk $x \geq -1$, maka
$\begin{align}
\dfrac{x \left| x+1 \right|-2}{x} & \lt 0 \\
\dfrac{x \left( x+1 \right)-2}{x} & \lt 0 \\
\dfrac{x^{2}+x-2}{x} & \lt 0 \\
\dfrac{(x+2)(x-1)}{x} & \lt 0
\end{align}$
Dari gambar dapat kita ambil kesimpulan, daerah $x \lt -2$ atau $0 \lt x \lt 1$ merupakan Himpunan Penyelesaian, karena pada daerah ini $\dfrac{(x+2)(x-1)}{x} \lt 0$.
Irisan $x \geq -1$ dan $x \lt -2$ atau $0 \lt x \lt 1$ adalah $0 \lt x \lt 1$
- Untuk $ x \lt -1$, maka
$\begin{align}
\dfrac{x \left| x+1 \right|-2}{x} & \lt 0 \\
\dfrac{x \left(-( x+1) \right)-2}{x} & \lt 0 \\
\dfrac{x \left(- x-1 \right)-2}{x} & \lt 0 \\
\dfrac{-x^{2}-x-2}{x} & \lt 0 \\
\dfrac{ x^{2}+x+2}{x} & \gt 0
\end{align}$
Karena $x^{2}+x+2$ definit positif maka himpunan penyelesaian adalah $x \gt 0$
Irisan $ x \lt -1$ dan $x \gt 0$ adalah himpunan kosong sehingga tidak ada nilai $x$ yang memenuhi.
Karena pada syarat kedua hasilnya himpunan kosong maka himpunan penyelesaian hanya pada syarat yang pertama yaitu $0 \lt x \lt 1$ jika ditulis dalam bentuk interval adalah $(0,1)$ sehingga nilai $2a+5b=0+5=5$
$ \therefore $ Pilihan yang sesuai adalah $(A)\ 5$
38. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika $1 \lt p \left| p-1 \right| $, maka...
$ \begin{align}
(A)\ & p \lt 0 \\
(B)\ & p \gt \dfrac{1-\sqrt{5}}{2} \\
(C)\ & p \gt \dfrac{\sqrt{5}-1}{2} \\
(D)\ & p \gt 0 \\
(E)\ & p \gt \dfrac{1+\sqrt{5}}{2}
\end{align}$
Untuk menyelesaikan pertidaksamaan nilai mutlak di atas kita coba dengan menggunakan $\sqrt{x^{2}}=\left| x \right|$ dan defenisi nilai mutlak $|x|=\left\{\begin{matrix}
x,\ \text{untuk}\ x\geq 0 \\
x,\ \text{untuk}\ x \lt 0
\end{matrix}\right.$
Batasan nilai $p$ yang kita peroleh dari $\left| p-1 \right|$ adalah $p=1$.
- Untuk $p \geq 1$, maka
$\begin{align}
p \left| p-1 \right| & \gt 1 \\
p \left( p-1 \right) & \gt 1 \\
p^{2}-p & \gt 1 \\
p^{2}-p-1 & \gt 0 \\
\end{align}$
Untuk menentukan pembuat nol dari $p$, kita coba gunakan rumus abc,
$\begin{align}
p_{1,2} &= \dfrac{-b \pm \sqrt{b^{2}-4ac}}{2a} \\
&= \dfrac{1 \pm \sqrt{1-4(1)(-1)}}{2(1)} \\
&= \dfrac{1 \pm \sqrt{5}}{2}
\end{align}$
Dengan menggunakan cara piral pertidaksamaan kuadrat, himpunan penyelesaian dari $p^{2}-p-1 \gt 0$ adalah $p \lt \dfrac{1 - \sqrt{5}}{2} $ atau $p \gt \dfrac{1 + \sqrt{5}}{2} $.
Irisan $p \geq 1$ dan $p \lt \dfrac{1 - \sqrt{5}}{2} $ atau $p \gt \dfrac{1 + \sqrt{5}}{2} $ adalah $p \gt \dfrac{1 + \sqrt{5}}{2} $
- Untuk $ p \lt 1$, maka
$\begin{align}
p \left| p-1 \right| & \gt 1 \\
p \left( -(p-1) \right) & \gt 1 \\
-p^{2}+p & \gt 1 \\
-p^{2}+p-1 & \gt 0 \\
p^{2}-p+1 & \lt 0
\end{align}$
Karena $p^{2}-p+1$ definit positif 'selalu bernilai positif untuk setiap $p$' maka tidak ada nilai $p$ yang mengakibatkan $p^{2}-p+1 \lt 0$ sehingga pada syarat ini himpunan penyelesaian adalah himpunan kosong.
Irisan $ p \lt 1$ dan himpunan kosong adalah himpunan kosong.
$ \therefore $ Pilihan yang sesuai adalah $(E)\ p \gt \dfrac{1+\sqrt{5}}{2}$
39. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Nilai $x$ bilangan real yang memenuhi pertidaksamaan $\dfrac{8}{a^{x}+2} \gt a^{x}$ dengan $a \gt 1$ adalah...
$\begin{align}
(A)\ & x \lt {}^\!\log_{2}a \\
(B)\ & x \lt {}^\!\log_{a}2 \\
(C)\ & x \gt {}^\!\log_{-2}a \\
(D)\ & x \gt {}^\!\log_{2}a \\
(E)\ & x \gt {}^\!\log_{a}2
\end{align}$
Untuk menyederhanakan penulisan pertidaksamaan kita coba dengan memisalkan $a^{x}=m$ dimana $m \gt 0$ menjadi;
$\begin{align}
\dfrac{8}{a^{x}+2} & \gt a^{x} \\
\dfrac{8}{m+2} & \gt m \\
\hline
\text{sama-sama dikali}\ & (m+2) \\
\hline
8 & \gt m(m+2) \\
8 & \gt m^{2}+2m \\
m^{2}+2m-8 & \lt 0 \\
(m+4)(m-2) & \lt 0 \\
-4 \lt m \lt 2 &
\end{align}$
Kita kembalikan nilai $m=a^{x}$ maka $-4 \lt a^{x} \lt 2$.
$\begin{align}
a^{x} & \lt 2 \\
{}^a\!\log a^{x} & \lt {}^a\!\log 2 \\
x & \lt {}^a\!\log 2 \\
x & \lt {}^\!\log_{a}2
\end{align}$
Karena $a^{x} \gt 1$ maka $-4 \lt a^{x}$ berlaku untuk $x \in R$.
Irisan dari $x \lt {}^\!\log_{a}2$ dan $x \in R$ adalah $x \lt {}^\!\log_{a}2$.
$\therefore$ Pilihan yang sesuai adalah $(B)\ x \lt {}^\!\log_{a}2$
40. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika $0 \lt a \lt 1$ maka $\dfrac{3+3a^{x}}{a^{x}+1} \gt a^{x}$ mempunyai penyelesaian...
$\begin{align}
(A)\ & x \gt {}^\!\log_{a}3 \\
(B)\ & x \lt -2{}^\!\log_{a}3 \\
(C)\ & x \lt {}^\!\log_{a}3 \\
(D)\ & x \gt -10{}^\!\log_{a}3 \\
(E)\ & x \lt 2{}^\!\log_{a}3
\end{align}$
Untuk menyederhanakan penulisan pertidaksamaan kita coba dengan memisalkan $a^{x}=m$ dimana $m \gt 0$ menjadi;
$\begin{align}
\dfrac{3+3a^{x}}{a^{x}+1} & \gt a^{x} \\
\dfrac{3+3m}{m+1} & \gt m \\
\hline
\text{sama-sama dikali}\ & (m+1) \\
\hline
3+3m & \gt m(m+1) \\
3+3m & \gt m^{2}+m \\
m^{2}-2m-3 & \lt 0 \\
(m-3)(m+1) & \lt 0 \\
m \lt -1\ \text{atau}\ & m \gt 3
\end{align}$
Kita kembalikan nilai $m=a^{x}$ maka $a^{x} \lt -1\ \text{atau}\ a^{x} \gt 3$.
Untuk $a^{x} \lt -1$ dan $0 \lt a \lt 1$ sehingga tidak ada nilai $x$ yang memenuhi.
Untuk $a^{x} \gt 3$ dan $0 \lt a \lt 1$, maka berlaku:
$\begin{align}
a^{x} & \gt 3 \\
{}^a\!\log a^{x} & \lt {}^a\!\log 3 \\
x & \lt {}^a\!\log 3 \\
x & \lt {}^ \!\log_{a} 3
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ x \lt {}^\!\log_{a}3$
41. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Himpunan penyelesaian dari pertidaksamaan $\left( {}^\!\log_{a}x \right)^{2}-{}^\!\log_{a}x-2 \gt 0 $ dengan $0 \lt a \lt 1$ adalah...
$ \begin{align}
(A)\ & x \lt a^{2}\ \text{atau}\ x \gt a^{-1} \\
(B)\ & x \lt a^{2}\ \text{atau}\ x \gt a^{-2} \\
(C)\ & a^{2}\ \lt x \lt a^{-1} \\
(D)\ & a^{2}\ \lt x \lt a^{-2} \\
(E)\ & a^{-2}\ \lt x \lt a^{2}
\end{align}$
Catatan calon guru yang mungkin kita butuhkan tentang pertidaksamaan logaritma yaitu:
Jika ${}^{a}\!\log f(x) \gt {}^{a}\!\log g(x)$, maka:
- Untuk $a \gt 1$ berlaku: $ f(x) \gt g(x)$
- Untuk $0 \lt a \lt 1$ berlaku: $ f(x) \lt g(x)$
$\begin{align}
\left( {}^\!\log_{a}x \right)^{2}-{}^\!\log_{a}x-2 & \gt 0 \\
m^{2}-m-2 & \gt 0 \\
(m-2)(m+1) & \gt 0
\end{align}$
Dengan menggunakan cara piral pertidaksamaan kuadrat kita peroleh $m \lt -1$ atau $m \gt 2$.
Kita kembalikan nilai $m={}^\!\log_{a}x$ maka:
- Untuk ${}^\!\log_{a}x \lt -1$ dan $0 \lt a \lt 1$
$\begin{align}
{}^\!\log_{a}x & \lt -1 \\
{}^\!\log_{a}x & \lt {}^\!\log_{a} a^{-1} \\
x & \gt a^{-1}
\end{align}$ - Untuk ${}^\!\log_{a}x \gt 2$ dan $0 \lt a \lt 1$
$\begin{align}
{}^\!\log_{a}x & \gt 2 \\
{}^\!\log_{a} x & \gt {}^\!\log_{a}a^{2} \\
x & \lt a^{2}
\end{align}$
42. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Himpunan penyelesaian dari pertidaksamaan $\left( {}^\!\log_{a}x \right)^{2}+4{}^\!\log_{a}x+3 \lt 0 $ dengan $ a \gt 1$ adalah...
$ \begin{align}
(A)\ & a^{-3}\ \lt x \lt a^{-1} \\
(B)\ & a^{-1}\ \lt x \lt a^{3} \\
(C)\ & a^{-1}\ \lt x \lt a^{-3} \\
(D)\ & a^{-3}\ \lt x \lt a \\
(E)\ & 1 \lt x \lt a^{-3}
\end{align}$
Catatan calon guru yang mungkin kita butuhkan tentang pertidaksamaan logaritma yaitu:
Jika ${}^{a}\!\log f(x) \gt {}^{a}\!\log g(x)$, maka:
- Untuk $a \gt 1$ berlaku: $ f(x) \gt g(x)$
- Untuk $0 \lt a \lt 1$ berlaku: $ f(x) \lt g(x)$
$\begin{align}
\left( {}^\!\log_{a}x \right)^{2}+4{}^\!\log_{a}x+3 & \lt 0 0 \\
m^{2}+4m+3 & \lt 0 \\
(m+1)(m+3) & \lt 0
\end{align}$
Dengan menggunakan cara piral pertidaksamaan kuadrat kita peroleh $ -3 \lt m \lt -1$.
Kita kembalikan nilai $m={}^\!\log_{a}x$ maka $ -3 \lt {}^\!\log_{a}x \lt -1$
- Untuk ${}^\!\log_{a}x \gt -3$ dan $ a \gt 1$
$\begin{align}
{}^\!\log_{a}x & \gt -3 \\
{}^\!\log_{a}x & \gt {}^\!\log_{a} a^{-3} \\
x & \gt a^{-3}
\end{align}$ - Untuk ${}^\!\log_{a}x \lt -1$ dan $ a \gt 1$
$\begin{align}
{}^\!\log_{a}x & \lt -1 \\
{}^\!\log_{a} x & \lt {}^\!\log_{a}a^{-1} \\
x & \lt a^{-1}
\end{align}$
43. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Untuk $0 \lt a \lt 1$, himpunan penyelesaian dari $\left( {}^\!\log_{a}x \right)^{2}-2\ {}^\!\log_{a}x-8 \gt 0 $ dengan adalah...
$ \begin{align}
(A)\ & x \lt a^{4}\ \text{atau}\ x \gt a^{-1} \\
(B)\ & x \lt a^{4}\ \text{atau}\ x \gt a^{-2} \\
(C)\ & a^{4}\ \lt x \lt a^{-1} \\
(D)\ & a^{4}\ \lt x \lt a^{-2} \\
(E)\ & a^{-4}\ \lt x \lt a^{4}
\end{align}$
Catatan calon guru yang mungkin kita butuhkan tentang pertidaksamaan logaritma yaitu:
Jika ${}^{a}\!\log f(x) \gt {}^{a}\!\log g(x)$, maka:
- Untuk $a \gt 1$ berlaku: $ f(x) \gt g(x)$
- Untuk $0 \lt a \lt 1$ berlaku: $ f(x) \lt g(x)$
$\begin{align}
\left( {}^\!\log_{a}x \right)^{2}-2\ {}^\!\log_{a}x-8 & \gt 0 \\
m^{2}-2m-8 & \gt 0 \\
(m-4)(m+2) & \gt 0
\end{align}$
Dengan menggunakan cara piral pertidaksamaan kuadrat kita peroleh $m \lt -2$ atau $m \gt 4$.
Kita kembalikan nilai $m={}^\!\log_{a}x$ maka ${}^\!\log_{a}x \lt -2$ atau ${}^\!\log_{a}x \gt 4$.
- Untuk ${}^\!\log_{a}x \lt -2$ dan $0 \lt a \lt 1$
$\begin{align}
{}^\!\log_{a}x & \lt -2 \\
{}^\!\log_{a}x & \lt {}^\!\log_{a} a^{-2} \\
x & \gt a^{-2}
\end{align}$ - Untuk ${}^\!\log_{a}x \gt 4$ dan $0 \lt a \lt 1$
$\begin{align}
{}^\!\log_{a}x & \gt 4 \\
{}^\!\log_{a} x & \gt {}^\!\log_{a}a^{4} \\
x & \lt a^{4}
\end{align}$
44. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Misalkan $(u_{n})$ adalah barisan aritmatika dengan suku pertama $a$ dan beda $2a$. Jika $u_{1}+u_{2}+u_{3}+u_{4}+u_{5}=100$, maka $u_{2}+u_{4}+u_{6}+\cdots+u_{20}=\cdots$
$\begin{align}
(A)\ & 720 \\
(B)\ & 840 \\
(C)\ & 960 \\
(D)\ & 1080 \\
(E)\ & 1200
\end{align}$
Catatan calon guru tentang deret artimatika yang mungkin kita butuhkan adalah suku ke-$n$ yaitu $U_{n}=a+(n-1)b$ dan jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)=\dfrac{n}{2} \left(a+U_{n} \right)$.
$\begin{align}
100 & = u_{1}+u_{2}+u_{3}+u_{4}+u_{5} \\
& = a+a+b+a+2b+a+3b+a+4b \\
& = 5a +10b \\
& = 5a +10(2a) \\
100 &= 25a \\
a &= 4 \\
b &= 8
\end{align}$
$\begin{align}
& u_{2}+u_{4}+\cdots+u_{18}+u_{20} \\
& = (a+b)+(a+3b)+\cdots+(a+17b)+(a+19b) \\
& = 10a +b(1+3+5+\cdots+19) \\
& = 10a +b(100) \\
& = 10(4) +8(100) \\
&= 840
\end{align}$
$\therefore$ Pilihan yang sesuai $(B)\ 840$
45. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui deret aritmatika:
$u_{1}+u_{3}+u_{5}+\cdots+u_{2n-1}=\dfrac{n(n+1)}{2}$, untuk setiap $n \geq 1$. Beda deret tersebut adalah...
$\begin{align}
(A)\ & \dfrac{1}{2} \\
(B)\ & 1 \\
(C)\ & \dfrac{3}{2} \\
(D)\ & 2 \\
(E)\ & \dfrac{5}{2}
\end{align}$
Catatan calon guru tentang barisan dan deret artimatika yang mungkin kita butuhkan adalah:
- Beda $b=u_{5}-u_{4}=\dfrac{u_{6}-u_{3}}{6-3}=\dfrac{u_{p}-u_{q}}{p-q}$
- Suku ke-$n$ yaitu $U_{n}=a+(n-1)b$
- Jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)=\dfrac{n}{2} \left(a+U_{n} \right)$
$\begin{align}
u_{1} &=\dfrac{1(1+1)}{2}=1 \\
u_{1}+u_{3} &= \dfrac{2(2+1)}{2}=3 \\
u_{3} &=2 \\
u_{1}+u_{3}+u_{5} &= \dfrac{3(3+1)}{2}=6 \\
u_{5} &=3 \\
\hline
b &= \dfrac{u_{p}-u_{q}}{p-q} \\
&= \dfrac{u_{5}-u_{3}}{5-3} \\
&= \dfrac{3-2}{5-3}=\dfrac{1}{2}
\end{align}$
$\therefore$ Pilihan yang sesuai $(A)\ \dfrac{1}{2}$
46. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika perbandingan suku pertama dan suku ketiga suatu barisan aritmetika adalah $2:3$, maka perbandingan suku kedua dan suku keempat adalah...
$\begin{align}
(A)\ & 1:3 \\
(B)\ & 3:4 \\
(C)\ & 4:5 \\
(D)\ & 5:6 \\
(E)\ & 5:7
\end{align}$
Catatan calon guru tentang barisan dan deret artimatika yang mungkin kita butuhkan adalah:
- Beda $b=u_{5}-u_{4}=\dfrac{u_{6}-u_{3}}{6-3}=\dfrac{u_{p}-u_{q}}{p-q}$
- Suku ke-$n$ yaitu $U_{n}=a+(n-1)b$
- Jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)=\dfrac{n}{2} \left(a+U_{n} \right)$
\dfrac{u_{1}}{u_{3}} &= \dfrac{2}{3} \\
\dfrac{a}{a+2b} &= \dfrac{2}{3} \\
3a &= 2a+4b \\
a &= 4b \\
\hline
\dfrac{u_{2}}{u_{4}} &= \dfrac{a+b}{a+3b} \\
&= \dfrac{4b+b}{4b+3b} \\
&= \dfrac{5b}{7b}=\dfrac{5 }{7 }
\end{align}$
$\therefore$ Pilihan yang sesuai $(E)\ 5:7$
47. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Seseorang berjalan dengan kecepatan $60\ km/jam$ selama satu jam pertama, Pada jam kedua, kecepatan berkurang menjadi seperempatnya demikian juga pada jam berikutnya. Jarak terjauh yang dapat ditempuh orang tersebut adalah...km.
$\begin{align}
(A)\ & 160 \\
(B)\ & 120 \\
(C)\ & 100 \\
(D)\ & 80 \\
(E)\ & 60
\end{align}$
Untuk menghitung jarak terjauh yang dapat ditempuh dapat digunakan konsep deret geometri tak hingga dengan suku pertama $a=60$ dan rasio $r=\dfrac{1}{4}$. Catatan calon guru tentang deret geometri tak hingga yang mungkin kita butuhkan yaitu jumlah deret geometri tak hingga $S_{\infty}=\dfrac{a}{1-r}$.
Jika kita tuliskan lintasan yang di tempuh dari jam pertama, jam kedua dan seterusnya adalah:
$\begin{align}
& 60+\dfrac{60}{4}+\dfrac{60}{16}+\dfrac{60}{64}+\cdots \\
\hline
S_{\infty} &=\dfrac{a}{1-r} \\
\hline
&= \dfrac{60}{1-\dfrac{1}{4}} \\
&= \dfrac{60}{\dfrac{3}{4}} \\
&= 60 \times \dfrac{4}{3} \\
&= 80
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 80$
48. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui deret aritmatika dengan suku pertama $a$ dan beda $b$. Jika $b=2a$ dan $u_{1}+u_{3}+u_{5}+u_{7 }+u_{9}=90$, maka nilai dari $u_{8}+u_{10}+u_{12}+u_{14}+u_{16}=\cdots$
$\begin{align}
(A)\ & 210 \\
(B)\ & 220 \\
(C)\ & 230 \\
(D)\ & 240 \\
(E)\ & 250
\end{align}$
Catatan calon guru tentang barisan dan deret artimatika yang mungkin kita butuhkan adalah:
- Beda $b=u_{5}-u_{4}=\dfrac{u_{6}-u_{3}}{6-3}=\dfrac{u_{p}-u_{q}}{p-q}$
- Suku ke-$n$ yaitu $U_{n}=a+(n-1)b$
- Jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)=\dfrac{n}{2} \left(a+U_{n} \right)$
90 & = u_{1}+u_{3}+u_{5}+u_{7 }+u_{9} \\
& = a+a+2b+a+4b+a+6b+a+8b \\
& = 5a +20b \\
& = 5a +20(2a) \\
90 &= 45a \\
a &= 2 \\
b &= 4
\end{align}$
$\begin{align}
& u_{8}+u_{10}+u_{12}+u_{14}+u_{16} \\
& = (a+7b)+(a+9b)+(a+11b)+(a+13b)+(a+15b) \\
& = 5a + b(7+9+11+13+15) \\
& = 5(2) + 4(55) \\
& = 10 + 220 \\
&= 230
\end{align}$
$\therefore$ Pilihan yang sesuai $(C)\ 230$
49. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika diketahui suku barisan aritmatika bersifat $x_{k+2}=x_{k}+p$ dengan $p \neq 0$ untuk sembarang bilangan asli postif $k$, maka $x_{3}+x_{5}+x_{7}+\cdots+x_{2n+1}=\cdots$
$\begin{align}
(A)\ & \dfrac{pn^{2}+2nx_{2}}{2} \\
(B)\ & \dfrac{2pn^{2}+2nx_{2}}{2} \\
(C)\ & \dfrac{pn^{2}+2x_{2}}{2} \\
(D)\ & \dfrac{pn^{2}+ nx_{2}}{2} \\
(E)\ & \dfrac{pn^{2}+2pnx_{2}}{2}
\end{align}$
Catatan calon guru tentang barisan dan deret artimatika yang mungkin kita butuhkan adalah:
- Beda $b=u_{5}-u_{4}=\dfrac{u_{6}-u_{3}}{6-3}=\dfrac{u_{p}-u_{q}}{p-q}$
- Suku ke-$n$ yaitu $U_{n}=a+(n-1)b$
- Jumlah $n$ suku pertama yaitu $S_{n}=\dfrac{n}{2} \left(2a+(n-1)b \right)=\dfrac{n}{2} \left(a+U_{n} \right)$
Dari deret aritmatika $x_{3}+x_{5}+x_{7}+\cdots+x_{2n+1}$
Deret aritmatika secara umum adalah
$S_{n}=u_{1}+u_{2}+u_{3}+u_{4}+u_{5}+u_{6}+u_{7}+\cdots$
$S_{n}=(a)+(a+b)+(a+2b)+(a+3b)+(a+4b)+(a+5b)+(a+6b)+\cdots$
Deret di atas sku pertama adalah $a$ dan beda $b$.
Jika kita pisah menjadi dua bagian suku-suku genap dan susku ganjil menjadi
$S_{genap}=u_{2}+ u_{4}+ u_{6}+ u_{8}+\cdots$
$S_{genap}= (a+b)+ (a+3b)+ (a+5b)+ \cdots$
Deret di atas dapat kita anggap deret aritmatika dengan suku pertama adalah $a+b$ dan beda $2b$
$S_{ganjil}=u_{1}+ u_{3}+ u_{5}+ u_{7}+\cdots$
$S_{ganjil}=(a)+ (a+2b)+ (a+4b)+ (a+6b)+\cdots$
Deret di atas dapat kita anggap deret aritmatika dengan suku pertama adalah $a$ dan beda $2b$
Jika kita terapkan pada soal, yang diminta adalah jumlah suku-suku ganjil dimana suku pertama adalah $x_{3}$ dan beda $2b$
$\begin{align}
x_{k+2} & = x_{k}+p \\
x_{k+2}-x_{k} & = p \\
x_{k+2}-x_{k} & = 2b \\
\hline
p & = 2b \\
\hline
\end{align}$
$\begin{align}
S_{n} & = x_{3}+x_{5}+x_{7}+\cdots+x_{2n+1} \\
S_{n} & = \dfrac{n}{2} \left(2a+(n-1)b \right) \\
& = \dfrac{n}{2} \left(2x_{3}+(n-1)p \right) \\
& = \dfrac{n}{2} \left(2 \left(x_{2}+b \right)+(n-1)p \right) \\
& = \dfrac{n}{2} \left(2 x_{2}+2b +pn-p \right) \\
& = \dfrac{n}{2} \left(2 x_{2}+p +pn-p \right) \\
& = \dfrac{n}{2} \left(2 x_{2} +pn \right) \\
& = \dfrac{2nx_{2}+pn^{2}}{2}
\end{align}$
$\therefore$ Pilihan yang sesuai $(A)\ \dfrac{2nx_{2}+pn^{2}}{2}$
50. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui barisan aritmatika dengan $U_{k}$ menyatakan suku ke $k$. Jika $U_{k+2}=U_{2}+kU_{16}-2$, maka nilai $U_{6}+U_{12}+U_{18}+U_{24}=\cdots$
$\begin{align}
(A)\ & \dfrac{2}{k} \\
(B)\ & \dfrac{3}{k} \\
(C)\ & \dfrac{4}{k} \\
(D)\ & \dfrac{6}{k} \\
(E)\ & \dfrac{8}{k} \\
\end{align}$
Catatan calon guru tentang barisan dan deret artimatika yang mungkin kita butuhkan adalah:
- Beda $b=u_{5}-u_{4}=\dfrac{u_{6}-u_{3}}{6-3}=\dfrac{u_{p}-u_{q}}{p-q}$
- Suku ke-$n$ yaitu $U_{n}=a+(n-1)b$
$\begin{align}
x_{k} & = a+(k-1)b \\
x_{k+2} & = a+(k+2-1)b \\
U_{2}+kU_{16}-2 & = a+(k+1)b \\
a+b+k(a+15b)-2 & = a+bk+b \\
ak+15bk -2 & = bk \\
ak+15bk - bk & = 2 \\
ak+14bk & = 2 \\
k \left(a +14b \right) & = 2 \\
a +14b \right & = \dfrac{2}{k} \\
\hline
U_{6}+U_{12}+U_{18}+U_{24} & = a+5b+a+11b+a+17b+a+23b \\
& = 4a+56b \\
& = 4 \left( a+14b \right) \\
& = 4 \left( \dfrac{2}{k} \right) =\dfrac{8}{k}
\end{align}$
$\therefore$ Pilihan yang sesuai $(E)\ \dfrac{8}{k}$
51. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Persamaan lingkaran yang pusatnya terletak pada garis $2x+3y-5=0$ serta menyinggung sumbu $X$ negatif dan sumbu $Y$ positif adalah...
$\begin{align}
(A)\ & x^{2}+y^{2}+10x-10y+25=0 \\
(B)\ & x^{2}+y^{2}-10x+10y+25=0 \\
(C)\ & x^{2}+y^{2}-10x+10y-15=0 \\
(D)\ & x^{2}+y^{2}+5x+10y+15=0 \\
(E)\ & x^{2}+y^{2}+5x-10y+15=0
\end{align}$
Catatan calon guru tentang Lingkaran yang mungkin kita butuhkan adalah:
- Pusat $(a,b)$ dengan jari-jari $r$
$\Leftrightarrow $ Persamaan Lingkaran $(x-a)^{2}+(y-b)^{2}=r^{2}$ - Persamaan Umum Lingkaran $x^{2}+y^{2}+Ax+By+C=0$
$\Leftrightarrow $ Pusat $\left (-\frac{1}{2}A,-\frac{1}{2}B \right )$ dengan jari-jari $r=\sqrt{\frac{1}{4}A^{2}+\frac{1}{4}B^{2}-C}$
$\begin{align}
2x+3y-5 &= 0 \\
2(-a)+3(a)-5 &= 0 \\
a &= 5 \\
\hline
(x-a)^{2}+(y-b)^{2} &=r^{2} \\
(x+a)^{2}+(y-a)^{2} &=5^{2} \\
(x+5)^{2}+(y-5)^{2} &=5^{2} \\
x^{2}+10x+25+y^{2}-10y+25 &=25 \\
x^{2}+y^{2}+10x-10y+25 &=0
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(A)\ x^{2}+y^{2}+10x-10y+25=0$
52. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Sebuah lingkaran memiliki pusat $(a,b)$ dengan jari-jari $12$ dan menyinggung garis $3x+4y=5$. Nilai $3a+4b$ yang mungkin adalah...
$\begin{align}
(A)\ & -65\ \text{dan}\ 75 \\
(B)\ & -60\ \text{dan}\ 70 \\
(C)\ & -55\ \text{dan}\ 65 \\
(D)\ & -50\ \text{dan}\ 60 \\
(E)\ & -45\ \text{dan}\ 55
\end{align}$
Catatan calon guru tentang Lingkaran yang mungkin kita butuhkan adalah:
- Pusat $(a,b)$ dengan jari-jari $r$
$\Leftrightarrow $ Persamaan Lingkaran $(x-a)^{2}+(y-b)^{2}=r^{2}$ - Jarak titik $(x_{1},y_{1})$ ke garis $ax+by+c=0$ adalah:
$d=\left| \dfrac{ax_{1}+by_{1}+c}{\sqrt{a^{2}+b^{2}}} \right|$
$\begin{align}
d &=\left| \dfrac{ax_{1}+by_{1}+c}{\sqrt{a^{2}+b^{2}}} \right| \\
12 &=\left| \dfrac{3a+4b-5}{\sqrt{3^{2}+4^{2}}} \right| \\
12 &=\left| \dfrac{3a+4b-5}{5} \right| \\
\hline
12 &= \dfrac{3a+4b-5}{5} \\
60 &= 3a+4b-5 \\
65 &= 3a+4b \\
\hline
-12 &= \dfrac{3a+4b-5}{5} \\
-60 &= 3a+4b-5 \\
-55 &= 3a+4b \\
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(C)\ -55\ \text{dan}\ 65$
53. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui titk $P(4,a)$ dan lingkaran $L:x^{2}+y^{2}-8x-2y+1=0$. Jika titik $P$ berada dalam lingkaran $L$, maka nilai $a$ yang mungkin adalah...
$\begin{align}
(A)\ & 1 \lt a \lt 3 \\
(B)\ & -3 \lt a \lt 5 \\
(C)\ & -5 \lt a \lt -3 \\
(D)\ & 3 \lt a \lt 5 \\
(E)\ & -5 \lt a \lt 3
\end{align}$
Catatan calon guru tentang Lingkaran yang mungkin kita butuhkan adalah:
Hubungan Titik $A(p,q)$ Pada lingkaran $L:x^{2}+y^{2}+Ax+By+C=0$
- Jika nilai $K=p^{2}+q^{2}+Ap+Bq+C$ dan $K \gt 0$ maka titik $A$ di luar $L$;
- Jika nilai $K=p^{2}+q^{2}+Ap+Bq+C$ dan $K = 0$ maka titik $A$ tepat pada $L$;
- Jika nilai $K=p^{2}+q^{2}+Ap+Bq+C$ dan $K \lt 0$ maka titik $A$ di dalam $L$;
Karena titik $P(4,a)$ dalam lingkaran $L:x^{2}+y^{2}-8x-2y+1=0$, maka berlaku:
$\begin{align}
4^{2}+a^{2}-8(4)-2(a)+1 & \lt 0 \\
16+a^{2}-32-2a+1 & \lt 0 \\
a^{2} -2a-15 & \lt 0 \\
(a+3)(a-5) & \lt 0
\end{align}$
Dengan menggunakan cara piral pertidaksamaan kuadrat, nilai $a$ yang memenuhi adalah $-3 \lt a \lt 5$.
$ \therefore $ Pilihan yang sesuai adalah $(B)\ -3 \lt a \lt 5$
54. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika garis $y=mx+b$ menyinggung lingkaran $x^{2}+y^{2}=1$, maka nilai $b^{2}-m^{2}+1=\cdots$
$\begin{align}
(A)\ & -3 \\
(B)\ & -2 \\
(C)\ & 0 \\
(D)\ & 2 \\
(E)\ & 3
\end{align}$
Catatan calon guru tentang Lingkaran yang mungkin kita butuhkan adalah:
- Jika nilai $D \gt 0$ maka garis memotong lingkaran;
- Jika nilai $D = 0$ maka garis menyinggung lingkaran;
- Jika nilai $D \lt 0$ maka garis tidak memotong dan tidak menyinggung lingkaran;
$\begin{align}
x^{2}+y^{2} & = 1 \\
x^{2}+(mx+b)^{2} & = 1 \\
x^{2}+ m^{2}x^{2}+2bmx+b^{2} & = 1 \\
\left(1+ m^{2} \right) x^{2}+2bmx+b^{2}-1 & = 0 \\
\hline
b^{2}-4ac & = 0 \\
\left( 2bm \right)^{2}-4\left(m^{2}+1 \right)\left(b^{2}-1 \right) & = 0 \\
4b^{2}m^{2}-4 m^{2} b^{2}-4b^{2}+4m^{2}+4 & = 0 \\
-4\left( b^{2}-m^{2}-1 \right)& = 0 \\
b^{2}-m^{2}-1 & = 0 \\
b^{2}-m^{2}-1+2 & = 0+2 \\
b^{2}-m^{2}+1 & = 2 \\
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(D)\ 2$
55. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika lingkaran $x^{2}+y^{2}=1$ menyinggung garis $ax+by=2b$, maka $\dfrac{a^{2}}{a^{2}+b^{2}}=\cdots$
$\begin{align}
(A)\ & \dfrac{1}{4} \\
(B)\ & \dfrac{1}{2} \\
(C)\ & \dfrac{3}{4} \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
Catatan calon guru tentang Lingkaran yang mungkin kita butuhkan adalah:
- Jika nilai $D \gt 0$ maka garis memotong lingkaran;
- Jika nilai $D = 0$ maka garis menyinggung lingkaran;
- Jika nilai $D \lt 0$ maka garis tidak memotong dan tidak menyinggung lingkaran;
$\begin{align}
x^{2}+y^{2} & = 1 \\
x^{2}+\left( 2-\dfrac{ax}{b} \right)^{2} & = 1 \\
x^{2}+4+ \dfrac{a^{2}x^{2}}{b^{2}} - \dfrac{4ax}{b} & = 1 \\
\left( \dfrac{a^{2}}{b^{2}}+1 \right) x^{2} - \dfrac{4a}{b}x + 3 & = 0 \\
\hline
D & = 0 \\
b^{2}-4ac & = 0 \\
\left( \dfrac{4a}{b} \right)^{2}-4\left( \dfrac{a^{2}}{b^{2}}+1 \right)\left( 3 \right) & = 0 \\
\dfrac{16a^{2}}{b^{2}} -12 \left( \dfrac{a^{2}+b^{2}}{b^{2}} \right) & = 0 \\
\dfrac{16a^{2}-12b^{2}-12a^{2}}{b^{2}} & = 0 \\
4a^{2}-12b^{2} & = 0 \\
a^{2} & = 3b^{2}\\
\hline
\dfrac{a^{2}}{a^{2}+b^{2}} & = \dfrac{3b^{2}}{3b^{2}+b^{2}} \\
& = \dfrac{3b^{2}}{4b^{2}} = \dfrac{3 }{4}
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(C)\ \dfrac{3 }{4}$
56. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Salah satu persamaan garis singgung lingkaran $x^{2}+y^{2}-4x+2y=0 $ yang tegak lurus dengan garis $x+2y=5$ adalah...
$\begin{align}
(A)\ & y=2x-2 \\
(B)\ & y=2x-6 \\
(C)\ & y=2x-8 \\
(D)\ & y=2x-10 \\
(E)\ & y=2x-12 \\
\end{align}$
Catatan calon guru tentang Lingkaran yang mungkin kita butuhkan adalah:
Jika diketahui gradien garis singgung lingkaran $(m)$
- Persamaan Lingkaran $x^{2}+y^{2}=r^{2}$
$\Leftrightarrow $ PGS: $y=mx\pm r\sqrt{m^{2}+1}$ - Persamaan Lingkaran $(x-a)^{2}+(y-b)^{2}=r^{2}$
$\Leftrightarrow $ PGS: $y-b=m(x-a)\pm r\sqrt{m^{2}+1}$
$\begin{align}
x^{2}+y^{2}-4x+2y &= 0 \\
x^{2}-4x+y^{2}+2y &= 0 \\
(x-2)^{2}-4+(y+1)^{2}-1 &= 0 \\
(x-2)^{2} +(y+1)^{2} &= 5
\end{align}$
Persamaan garis singgung lingkaran dengan $m=2$ adalah:
$\begin{align}
y-b & = m(x-a)\pm r\sqrt{m^{2}+1} \\
y+1 & = 2(x-2)\pm \sqrt{5} \sqrt{2^{2}+1} \\
y+1 & = 2 x-4 \pm 5 \\
y & = 2 x-5 \pm 5 \\
\hline
y & = 2 x-5 - 5 \\
y & = 2 x-5 + 5 \\
\end{align}$
$ \therefore $ Pilihan yang sesuai adalah $(D)\ y=2x-10$
57. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika suku banyak $P(x)=ax^{3}+x^{2}+bx+1$ habis dibagi $x^{2}+1$ dan $x+a$, maka $ab=\cdots$
$\begin{align}
(A)\ & \dfrac{1}{4} \\
(B)\ & \dfrac{1}{2} \\
(C)\ & 1 \\
(D)\ & 2 \\
(E)\ & 4
\end{align}$
Catatan calon guru tentang Suku Banyak (Polinomial) yang mungkin kita butuhkan adalah:
- Suku banyak $f(x)$ dibagi $(x-a)$ maka $f(a)=sisa$
- Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+(mx+n)$
Agar $(-a +b)x=0$ maka $-a+b=0$ atau $b=a$.
Karena $P(x)$ habis dibagi $x+a$
$ \begin{align}
P(x) & = ax^{3}+x^{2}+bx+1 \\
P(-a) & = a(-a)^{3}+(-a)^{2}+b(-a)+1 \\
0 & = -a^{4}+a^{2}+(a)(-a)+1 \\
0 & = -a^{4}+a^{2}-a^{2}+1 \\
a^{4} & = 1 \\
a & = \pm 1 \\
b & = \pm 1 \\
ab & = 1
\end{align} $
$ \therefore $ Pilihan yang sesuai adalah $(C)\ 1$
58. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Suku banyak $f(x)=ax^{3}-ax^{2}+bx-a$ habis dibagi $x^{2}+1$ dan dibagi $x-4$ bersisa $51$ Nilai $a+b=\cdots$
$\begin{align}
(A)\ & -2 \\
(B)\ & -1 \\
(C)\ & 0 \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
Catatan calon guru tentang Suku Banyak (Polinomial) yang mungkin kita butuhkan adalah:
- Suku banyak $f(x)$ dibagi $(x-a)$ maka $f(a)=sisa$
- Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+(mx+n)$
Agar $(-a +b)x=0$ maka $-a+b=0$ sehingga berlaku $b=a$.
Karena $P(x)$ dibagi $x-4$ bersisa $51$, maka berlaku:
$ \begin{align}
f(x) & = ax^{3}-ax^{2}+bx-a \\
f(4) & = a(4)^{3}-a(4)^{2}+(a)(4)-a \\
51 & = 64a -16a +4a-a \\
51 & = 51a \\
a & = 1 \\
b & = 1 \\
a+b & = 2
\end{align} $
$ \therefore $ Pilihan yang sesuai adalah $(E)\ 2$
59. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika $P(x)= x^{3}+ax^{2}+2x+b$ dengan $a \neq 0$ habis dibagi $x^{2}+2$, maka nilai $\dfrac{b}{2a}$ adalah...
$\begin{align}
(A)\ & \dfrac{1}{4} \\
(B)\ & \dfrac{1}{2} \\
(C)\ & 1 \\
(D)\ & 2 \\
(E)\ & 4
\end{align}$
Catatan calon guru tentang Suku Banyak (Polinomial) yang mungkin kita butuhkan adalah:
- Suku banyak $f(x)$ dibagi $(x-a)$ maka $f(a)=sisa$
- Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+(mx+n)$
$ \begin{align}
b-2a & = 0 \\
b & = 2a \\
\hline
\dfrac{b}{2a} & = \dfrac{2a}{2a} \\
& = 1
\end{align} $
$ \therefore $ Pilihan yang sesuai adalah $(C)\ 1$
60. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika $P(x)= ax^{3}+bx^{2}+(a-2b)x-a$ habis dibagi oleh $x^{2}+2$ dan $x+b$, maka nilai $ab$ adalah...
$\begin{align}
(A)\ & -\dfrac{1}{4} \\
(B)\ & -\dfrac{1}{2} \\
(C)\ & -1 \\
(D)\ & -2 \\
(E)\ & -4
\end{align}$
Catatan calon guru tentang Suku Banyak (Polinomial) yang mungkin kita butuhkan adalah:
- Suku banyak $f(x)$ dibagi $(x-a)$ maka $f(a)=sisa$
- Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+(mx+n)$
$ \begin{align}
P(x) & \equiv \left( k \right)\left(x^{2}+2\right) \left(x+b \right) \\
ax^{3}+bx^{2}+(a-2b)x-a & \equiv kx^{3}+kbx^{2}+2kx+2bk
\end{align} $
Dari kesamaan dua suku banyak di atas kita peroleh
$ \begin{align}
bx^{2} \equiv kbx^{2} & \rightarrow b=kb \rightarrow k=1 \\
ax^{3} \equiv kx^{3} & \rightarrow a=k \rightarrow a=1 \\
-a \equiv 2bk & \rightarrow -a=2bk \rightarrow -1=2b \\
\hline
ab & = (1) \cdot -\dfrac{1}{2}=-\dfrac{1}{2}
\end{align} $
$ \therefore $ Pilihan yang sesuai adalah $(B)\ -\dfrac{1}{2}$
61. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Suku banyak $P(x)= x^{3}+bx^{2}-2x-6$ dibagi $(x-2)^{2}$ bersisa $-2x+a$. Nilai $a+b=\cdots$
$\begin{align}
(A)\ & 15 \\
(B)\ & 13 \\
(C)\ & 0 \\
(D)\ & -13 \\
(E)\ & -15
\end{align}$
Catatan calon guru tentang Suku Banyak (Polinomial) yang mungkin kita butuhkan adalah:
- Suku banyak $f(x)$ dibagi $(x-a)$ maka $f(a)=sisa$
- Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+(mx+n)$
$ \begin{align}
10x+4bx-4b-22 & \equiv -2x+a \\
(10 +4b)x-4b-22 & \equiv -2x+a \\
\hline
10+4b & \equiv -2 \rightarrow b=-3 \\
-4b-22 & \equiv a \rightarrow a=-10 \\
a+b & = -13
\end{align} $
$ \therefore $ Pilihan yang sesuai adalah $(D)\ -13$
62. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui suku banyak $f(x)= ax^{3}+(a+b)x^{2}-bx+a+b$. Jika $x^{2}+1$ adalah faktor dari $f(x)$ dan $f(a)=2$, maka nilai $ab=\cdots$
$\begin{align}
(A)\ & -2 \\
(B)\ & -1 \\
(C)\ & 0 \\
(D)\ & 1 \\
(E)\ & 2
\end{align}$
Catatan calon guru tentang Suku Banyak (Polinomial) yang mungkin kita butuhkan adalah:
- Suku banyak $f(x)$ dibagi $(x-a)$ maka $f(a)=sisa$
- Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+(mx+n)$
$ \begin{align}
f(x) &= ax^{3}+(a+b)x^{2}-bx+a+b \\
f(a) &= a(a)^{3}+(a+b)(a)^{2}-b(a)+a+b \\
2 &= a(a)^{3}+(0)(a)^{2}-b(a)+0 \\
2 &= a(a)^{3}-(-a)(a)+0 \\
0 &= a^{4}+a^{2}-2 \\
0 &= \left(a^{2}+2 \right)\left(a^{2}-1 \right) \\
0 &= \left(a^{2}+2 \right)\left(a-1 \right)\left(a+1 \right) \\
\hline
a =1 & \rightarrow b=-1 \\
a =-1 & \rightarrow b=+1 \\
a+b & = -1
\end{align} $
$ \therefore $ Pilihan yang sesuai adalah $(B)\ -1$
63. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika suku banyak $f(x)= ax^{3}+3x^{2}+(b-2)x+b$ habis dibagi $x^{2}+1$, maka nilai $a+b=\cdots$
$\begin{align}
(A)\ & 1 \\
(B)\ & 2 \\
(C)\ & 4 \\
(D)\ & 5 \\
(E)\ & 6
\end{align}$
Catatan calon guru tentang Suku Banyak (Polinomial) yang mungkin kita butuhkan adalah:
- Suku banyak $f(x)$ dibagi $(x-a)$ maka $f(a)=sisa$
- Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+(mx+n)$
Agar $(b-a-2)x+b-3=0$, maka $ b-a-2 =0$ dan $b-3=$ sehingga berlaku $b=3$ atau $b-a-2 =0 \rightarrow a=1$. Nilai $a+b=4$
$ \therefore $ Pilihan yang sesuai adalah $(C)\ 4$
64. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika Diketahui $P(x)= \left( x-1 \right)\left( x^{2}-x-2 \right) \cdot Q(x)+\left( ax+b \right)$. Dengan $Q(x)$ adalah suatu suku banyak. Jika $P(x)$ dibagi dengan $(x+1)$ bersisa $10$ dan jika dibagi $(x-1)$ bersisa $20$. Maka apabila $P(x)$ dibagi dengan $(x-2)$ akan bersisa...
$\begin{align}
(A)\ & 10 \\
(B)\ & 20 \\
(C)\ & 25 \\
(D)\ & 35 \\
(E)\ & 45
\end{align}$
Catatan calon guru tentang Suku Banyak (Polinomial) yang mungkin kita butuhkan adalah:
- Suku banyak $f(x)$ dibagi $(x-a)$ maka $f(a)=sisa$
- Suku banyak $f(x)$ dibagi $(x-a)(x-b)$ maka $f(x)=H(x) \cdot (x-a)(x-b)+(mx+n)$
P(x) &= \left( x-1 \right)\left( x^{2}-x-2 \right) \cdot Q(x)+\left( ax+b \right) \\
P(x) &= \left( x-1 \right)\left( x-1 \right)\left( x-2 \right) \cdot Q(x)+\left( ax+b \right) \\
P(-1) & =10 \rightarrow -a +b= 10 \\
P( 1) &=20 \rightarrow a +b= 20 \\
\end{align} $
$\begin{array}{c|c|cc}
-a+b = 10 & \\
a+b = 20 & (+) \\
\hline
2b = 30 & \\
b = 15 & \\
a = 5
\end{array} $
Jika $P(x)$ dibagi oleh $(x-2)$, maka sisa pembagian adalah:
$ \begin{align}
P(x) &= \left( x-1 \right)\left( x^{2}-x-2 \right) \cdot Q(x)+\left( ax+b \right) \\
P(x) &= \left( x-1 \right)\left( x-1 \right)\left( x-2 \right) \cdot Q(x)+\left( ax+b \right) \\
P(2) &= 2a+ b \\
P(2) &= 2(5)+ (15)=25
\end{align} $
$ \therefore $ Pilihan yang sesuai adalah $(C)\ 25$
65. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika $\lim\limits_{t \to 2} \left (\sqrt[3]{a+\dfrac{b}{t^{3}}}-2 \right )=A$, maka nilai $\lim\limits_{t \to 2} \left (\sqrt[3]{\dfrac{a}{8}+\dfrac{b}{8t^{3}}}-t+1 \right )=\cdots$
$\begin{align}
(A)\ & \dfrac{A}{2} \\
(B)\ & \dfrac{A}{3} \\
(C)\ & 0 \\
(D)\ & \dfrac{A+2}{2} \\
(E)\ & \dfrac{A+3}{3} \\
\end{align}$
Catatan calon guru tentang limit fungsi yang mungkin kita butuhkan adalah:
- $\lim\limits_{x \to c} k=k$
- $\lim\limits_{x \to c} \left( f(x)\pm g(x) \right) = \lim\limits_{x \to c} f(x)\pm\lim\limits_{x \to c} g(x)$
- $\lim\limits_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{ \lim\limits_{x \to c} f(x)}$ dimana $\lim\limits_{x \to c} f(x) \gt 0$ bilamana $n$ genap
\lim\limits_{t \to 2} \left (\sqrt[3]{a+\dfrac{b}{t^{3}}}-2 \right ) &= A \\
\lim\limits_{t \to 2} \left (\sqrt[3]{a+\dfrac{b}{t^{3}}} \right )-\lim\limits_{t \to 2} \left (2 \right ) &= A \\
\lim\limits_{t \to 2} \left (\sqrt[3]{a+\dfrac{b}{t^{3}}} \right )- 2 &= A \\
\lim\limits_{t \to 2} \left (\sqrt[3]{a+\dfrac{b}{t^{3}}} \right ) &= A+2
\end{align} $
$ \begin{align}
& \lim\limits_{t \to 2} \left (\sqrt[3]{\dfrac{a}{8}+\dfrac{b}{t^{3}}}-t+1 \right ) \\
&= \dfrac{1}{2} \cdot \lim\limits_{t \to 2} \left (\sqrt[3]{a+\dfrac{b}{t^{3}}} \right )-\lim\limits_{t \to 2} \left (t \right )+\lim\limits_{t \to 2} \left (1 \right ) \\
&= \dfrac{1}{2} \cdot \left (A+2 \right )-2+1 \\
&= \dfrac{A}{2}+1-1 = \dfrac{A}{2}
\end{align} $
$ \therefore $ Pilihan yang sesuai adalah $(A)\ \dfrac{A}{2}$
66. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika $\lim\limits_{x \to 1} \left (\dfrac{\sqrt{ax^{4}+b}-2 }{x-1} \right )=A$, maka nilai $\lim\limits_{x \to 1} \left (\dfrac{\sqrt{ax^{4}+b}-2x }{x^{2}+2x-3} \right )=\cdots$
$\begin{align}
(A)\ & \dfrac{2-A}{2} \\
(B)\ & -\dfrac{A}{2} \\
(C)\ & \dfrac{A-2}{4} \\
(D)\ & \dfrac{A}{4} \\
(E)\ & \dfrac{A+2}{4} \\
\end{align}$
Catatan calon guru tentang limit fungsi yang mungkin kita butuhkan adalah:
- $\lim\limits_{x \to c} k=k$
- $\lim\limits_{x \to c} \left( f(x)\pm g(x) \right) = \lim\limits_{x \to c} f(x)\pm\lim\limits_{x \to c} g(x)$
- $\lim\limits_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{ \lim\limits_{x \to c} f(x)}$ dimana $\lim\limits_{x \to c} f(x) \gt 0$ bilamana $n$ genap
& \lim\limits_{x \to 1} \left (\dfrac{\sqrt{ax^{4}+b}-2x }{x^{2}+2x-3} \right) \\
& = \lim\limits_{x \to 1} \left (\dfrac{\sqrt{ax^{4}+b}-2x }{(x-1)(x+3)} \right) \\
& = \lim\limits_{x \to 1} \left (\dfrac{\sqrt{ax^{4}+b}-2+2-2x }{(x-1)(x+3)} \right) \\
& = \lim\limits_{x \to 1} \left (\dfrac{\sqrt{ax^{4}+b}-2 }{(x-1)(x+3)}+\dfrac{2-2x }{(x-1)(x+3)} \right) \\
& = \lim\limits_{x \to 1} \left (\dfrac{\sqrt{ax^{4}+b}-2 }{(x-1)} \cdot \dfrac{1}{(x+3)}+\dfrac{2-2x }{(x-1)} \cdot \dfrac{1}{(x+3)} \right) \\
& = \lim\limits_{x \to 1} \dfrac{\sqrt{ax^{4}+b}-2}{(x-1)} \cdot \lim\limits_{x \to 1} \dfrac{1} {(x+3)}+\lim\limits_{x \to 1} \dfrac{2-2x }{(x-1)} \cdot \lim\limits_{x \to 1} \dfrac{1}{(x+3)} \\
& = A \cdot \dfrac{1} {4}+ \lim\limits_{x \to 1} \dfrac{-2(x-1) }{(x-1)} \cdot \dfrac{1}{4} \\
& = A \cdot \dfrac{1} {4}+ (-2) \cdot \dfrac{1}{4} \\
& = \dfrac{A}{4}- \dfrac{2}{4} = \dfrac{A-2}{4}
\end{align} $
$ \therefore $ Pilihan yang sesuai adalah $(C)\ \dfrac{A-2}{4}$
67. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika $\lim\limits_{x \to 2} \left (\dfrac{\sqrt[3]{ax+b}}{x+1} \right )=2$, maka nilai $\lim\limits_{x \to 2} \left (\dfrac{\sqrt[3]{\dfrac{ax}{8}+\dfrac{b}{8}}-2x+1}{x^{2}+4x+3} \right )=\cdots$
$\begin{align}
(A)\ & -\dfrac{2}{15} \\
(B)\ & -\dfrac{1}{15} \\
(C)\ & 0 \\
(D)\ & \dfrac{1}{15} \\
(E)\ & \dfrac{2}{15} \\
\end{align}$
Catatan calon guru tentang limit fungsi yang mungkin kita butuhkan adalah:
- $\lim\limits_{x \to c} k=k$
- $\lim\limits_{x \to c} \left( f(x)\pm g(x) \right) = \lim\limits_{x \to c} f(x)\pm\lim\limits_{x \to c} g(x)$
- $\lim\limits_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{ \lim\limits_{x \to c} f(x)}$ dimana $\lim\limits_{x \to c} f(x) \gt 0$ bilamana $n$ genap
\lim\limits_{x \to 2} \left (\dfrac{\sqrt[3]{ax+b}}{x+1} \right ) &= 2 \\
\dfrac{\sqrt[3]{2a+b}}{2+1} &= 2 \\
\sqrt[3]{2a+b} &= 6
\end{align} $
$ \begin{align}
& \lim\limits_{x \to 2} \left (\dfrac{\sqrt[3]{\dfrac{ax}{8}+\dfrac{b}{8}}-2x+1}{x^{2}+4x+3} \right ) \\
&= \lim\limits_{x \to 2} \left (\dfrac{\dfrac{1}{2} \cdot \sqrt[3]{ ax + b }-2x+1}{(x+1)(x+3)} \right ) \\
&= \dfrac{\dfrac{1}{2} \cdot \sqrt[3]{ 2a + b }-2(2) +1}{(2+1)(2+3)} \\
&= \dfrac{\dfrac{1}{2} \cdot 6-3}{15} \\
&= \dfrac{0}{15}=0
\end{align} $
$ \therefore $ Pilihan yang sesuai adalah $(C)\ 0$
68. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika $\lim\limits_{x \to 2} \left (\dfrac{\sqrt[3]{ax^{3}+b}}{x-1} \right )=A$, maka nilai $\lim\limits_{x \to 2} \left (\dfrac{\sqrt[3]{\dfrac{ax^{3}}{8}+\dfrac{b}{8}}-2x}{x^{2}+2x-2} \right )=\cdots $
$\begin{align}
(A)\ & \dfrac{1}{12}A \\
(B)\ & \dfrac{1}{12}(A-2) \\
(C)\ & \dfrac{1}{12}(A-1) \\
(D)\ & \dfrac{1}{12}(A-6) \\
(E)\ & \dfrac{1}{12}(A-8)
\end{align}$
Catatan calon guru tentang limit fungsi yang mungkin kita butuhkan adalah:
- $\lim\limits_{x \to c} k=k$
- $\lim\limits_{x \to c} \left( f(x)\pm g(x) \right) = \lim\limits_{x \to c} f(x)\pm\lim\limits_{x \to c} g(x)$
- $\lim\limits_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{ \lim\limits_{x \to c} f(x)}$ dimana $\lim\limits_{x \to c} f(x) \gt 0$ bilamana $n$ genap
\lim\limits_{x \to 2} \left (\dfrac{\sqrt[3]{ax^{3}+b}}{x-1} \right ) &= A \\
\dfrac{\sqrt[3]{a(2)^{3}+b}}{2-1} &= A \\
\sqrt[3]{8a +b} &= A
\end{align} $
$ \begin{align}
& \lim\limits_{x \to 2} \left (\dfrac{\sqrt[3]{\dfrac{ax^{3}}{8}+\dfrac{b}{8}}-2x}{x^{2}+2x-2} \right ) \\
&= \lim\limits_{x \to 2} \left (\dfrac{\frac{1}{2} \cdot \sqrt[3]{ax^{3}+b}-2x}{x^{2}+2x-2} \right ) \\
&= \dfrac{\frac{1}{2} \cdot \sqrt[3]{8a +b}-2(2)}{(2)^{2}+2(2)-2} \\
&= \dfrac{\frac{1}{2} \cdot A-4}{6} \\
&= \dfrac{A-8}{12}
\end{align} $
$ \therefore $ Pilihan yang sesuai adalah $(E)\ \dfrac{1}{12}(A-8)$
69. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Nilai $\lim\limits_{x \to 0} \dfrac{cot\ 2x - csc\ 2x}{cos\ 3x\ tan\ \frac{1}{3}x } =\cdots$
$\begin{align}
(A)\ & 3 \\
(B)\ & 2 \\
(C)\ & 0 \\
(D)\ & -2 \\
(E)\ & -3
\end{align}$
Catatan calon guru tentang limit fungsi trigonometri yang mungkin kita butuhkan adalah:
- $\lim\limits_{x \to 0} \dfrac{tan\ ax }{bx} = \dfrac{a}{b}$
- $\lim\limits_{x \to 0} \dfrac{sin\ ax }{sin\ bx} = \dfrac{a}{b}$
- $\lim\limits_{x \to 0} \dfrac{tan\ ax }{sin\ bx} = \dfrac{a}{b}$
& \lim\limits_{x \to 0} \dfrac{cot\ 2x - csc\ 2x}{cos\ 3x\ tan\ \frac{1}{3}x } \\
& = \lim\limits_{x \to 0} \dfrac{\dfrac{cos\ 2x}{sin\ 2x} - \frac{1}{sin\ 2x}}{cos\ 3x\ tan\ \frac{1}{3}x } \\
& = \lim\limits_{x \to 0} \dfrac{\dfrac{cos\ 2x-1}{sin\ 2x}}{cos\ 3x\ tan\ \frac{1}{3}x } \\
& = \lim\limits_{x \to 0} \dfrac{ cos\ 2x-1}{cos\ 3x\ tan\ \frac{1}{3}x\ sin\ 2x } \\
& = \lim\limits_{x \to 0} \dfrac{ 1-sin^{2} x-1}{cos\ 3x\ tan\ \frac{1}{3}x\ sin\ 2x } \\
& = \lim\limits_{x \to 0} \dfrac{ -2sin^{2} x }{cos\ 3x\ tan\ \frac{1}{3}x\ sin\ 2x } \\
& = \lim\limits_{x \to 0} \dfrac{ -2\ sin\ x\ sin\ x }{cos\ 3x\ tan\ \frac{1}{3}x\ sin\ 2x } \\
& = \dfrac{ -2\ \cdot 1 \cdot 1 }{cos\ 0\ \cdot \frac{1}{3}\ \cdot 2 } \\
& = \dfrac{ -2 }{ \frac{2}{3} } =-3
\end{align} $
$ \therefore $ Pilihan yang sesuai adalah $(E)\ -3$
70. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Nilai $ \lim\limits_{x \to \infty} \left ( \sqrt{9x^2+18x-2017}+\sqrt{4x^2-20x+2018}-5x-2019 \right )= \cdots$
$\begin{align}
(A)\ & -2011 \\
(B)\ & -2017 \\
(C)\ & -2019 \\
(D)\ & -2021 \\
(E)\ & -2027 \\
\end{align}$
Penyelesaian soal limit takhingga di atas kita coba selesaikan dengan cara piral (pintar bernalar) Bapak Husein Tampomas, yaitu;
$\begin{align}
& \lim\limits_{x \to \infty} \left ( \sqrt{9x^2+18x-2017}+\sqrt{4x^2-20x+2018}-5x-2019 \right ) \\
& = \lim\limits_{x \to \infty} \left ( \sqrt{\left( 3x+\frac{18}{6} \right)^{2} }+\sqrt{\left( 2x-\frac{20}{4} \right)^{2} }-5x-2019 \right ) \\
& = \lim\limits_{x \to \infty} \left ( \left( 3x+3 \right) + \left( 2x-5 \right)-5x-2019 \right ) \\
& = \lim\limits_{x \to \infty} \left ( 3x+3 + 2x-5 -5x-2019 \right ) \\
& = \lim\limits_{x \to \infty} \left ( -2 -2019 \right ) \\
& = -2021
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ -2021$
71. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Nilai $ \lim\limits_{x \to \infty} 2x \left ( \sqrt{9+\frac{10}{x}}-3 \right )= \cdots$
$\begin{align}
(A)\ & \dfrac{20}{3} \\
(B)\ & \dfrac{10}{3} \\
(C)\ & -\dfrac{10}{3} \\
(D)\ & -\dfrac{20}{3} \\
(E)\ & \infty
\end{align}$
Penyelesaian soal limit takhingga di atas kita coba dengan sedikit manipulasi aljabar, yaitu:
$\begin{align}
& \lim\limits_{x \to \infty} 2x \left ( \sqrt{9+\frac{10}{x}}-3 \right ) \\
& = \lim\limits_{x \to \infty} \left ( 2x \sqrt{9+\frac{10}{x}}-2x \cdot 3 \right ) \\
& = \lim\limits_{x \to \infty} \left ( \sqrt{9 \cdot 4x^{2}+\frac{10}{x} \cdot 4x^{2}} - 6x \right ) \\
& = \lim\limits_{x \to \infty} \left ( \sqrt{36x^{2}+40x} - 6x \right ) \\
& = \lim\limits_{x \to \infty} \left ( \sqrt{ \left( 6x +\frac{40}{12} \right)^{2} } - 6x \right ) \\
& = \lim\limits_{x \to \infty} \left ( 6x +\frac{40}{12} - 6x \right ) \\
& = \dfrac{40}{12}=\dfrac{10}{3}
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ \dfrac{10}{3}$
72. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Dari angka $2,3,5,7,9$ akan dibentuk bilangan kelipatan $5$ yang terdiri dari $6$ digit. Jika angka $5$ muncul dua kali, maka banyaknya bilangan yang terbentuk adalah...
$\begin{align}
(A)\ & 240 \\
(B)\ & 120 \\
(C)\ & 50 \\
(D)\ & 40 \\
(E)\ & 30
\end{align}$
Dari angka $2,3,5,7,9$ akan disusun bilangan kelipatan $5$ yang terdiri dari $6$ digit. Untuk menyusun bilangan kelipatan $5$, maka kita mulai bekerja pada satuan. Karena angka $5$ boleh muncul dua kali dan angka lain hanya $1$ kali maka:
$\begin{array}{c|c|c|c|c|c|cc}
k_{1} & k_{2} & k_{3} & k_{4} & k_{5} & k_{6} \\
\hline
(1) & (2) & (3) & (4) & (5) & (1) \end{array} $
- $k_{6}$ ada $1$ angka yang mungkin agar hasilnya bilangan kelipatan $5$ yaitu $5$
- $k_{1}$ ada $5$ angka yang mungkin yaitu $2,3,5,7,9$
- $k_{2}$ ada $5$ angka yang mungkin, tetapi karena satu angka sudah dipakai pada satuan, sehingga tinggal $4$ angka yang bisa dipakai dari $2,3,5,7,9$
- $k_{3}$ ada $5$ angka yang mungkin, tetapi karena dua angka sudah dipakai pada satuan dan puluhan, sehingga tinggal $3$ angka yang bisa dipakai dari $2,3,5,7,9$
- $k_{4}$ ada $5$ angka yang mungkin, tetapi karena tiga angka sudah dipakai pada satuan, puluhan dan ratusan, sehingga tinggal $2$ angka yang bisa dipakai dari $2,3,5,7,9$
- $k_{5}$ ada $5$ angka yang mungkin, tetapi karena empat angka sudah dipakai pada satuan, puluhan, ratusan dan ribuan, sehingga tinggal $1$ angka yang bisa dipakai dari $2,3,5,7,9$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 120$
73. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Dari angka $2,4,5,6,8,9$ akan dibentuk bilangan ganjil terdiri dari $3$ digit berbeda. Banyak bilangan yang terbentuk yang nilainya kurang dari $500$ adalah...
$\begin{align}
(A)\ & 144 \\
(B)\ & 72 \\
(C)\ & 24 \\
(D)\ & 20 \\
(E)\ & 16
\end{align}$
Dari angka $2,4,5,6,8,9$ akan dibentuk bilangan ganjil terdiri dari $3$ digit berbeda kurang dari $500$. Untuk menyusun bilangan ganjil kurang dari $500$, maka kita bekerja pada satuan dan ratusan sekaligus
$\begin{array}{c|c|cc}
k_{1} & k_{2} & k_{3} \\
\hline
(2) & (4) & (2) & \end{array} $
- $k_{1}$ ada $2$ angka yang mungkin agar hasilnya nanti bilangan kurang dari $500$ yaitu $2$ dan $4$
- $k_{3}$ ada $2$ angka yang mungkin agar hasilnya bilangan ganjil yaitu $5,9$
- $k_{2}$ ada $6$ angka yang mungkin, tetapi karena dua angka sudah dipakai pada satuan dan ratusan sehingga tinggal $4$ angka yang bisa dipakai dari $2,4,5,6,8,9$
$\therefore$ Pilihan yang sesuai adalah $(E)\ 16$
74. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Dari angka-angka $2,4,6,7,8$ akan dibuat bilangan yang terdiri dari $6$ angka. Banyak bilangan yang dapat dibentuk jika angka $6$ boleh muncul dua kali adalah...
$\begin{align}
(A)\ & 504 \\
(B)\ & 440 \\
(C)\ & 384 \\
(D)\ & 360 \\
(E)\ & 180
\end{align}$
$P(n,n_{1},n_{2},n_{k})$ atau $P_{n_{1},n_{2},n_{k}}^{n}$ atau $_{n}P_{n_{1},n_{2},n_{k}}$, dimana $n_{1}+n_{2}+n_{k} \leq n$
$P_{n_{1},n_{2},n_{k}}^{n}=\dfrac{n!}{n_{1}! \times n_{2}! \times n_{k}!}$
Dari data pada soal kita peroleh masing-masing banyak angka yaitu $2=1$,$4=1$, $6=2$, $7=1$ ,$8=1$.
$\begin{align}
P_{n_{1},n_{2},n_{k}}^{n} &= \dfrac{n!}{n_{1}! \cdot n_{2}! \cdot n_{k}!} \\
P_{1,1,1,1,2}^{6} &= \dfrac{6!}{1! \cdot 1! \cdot 1! \cdot 1! \cdot 2!} \\
&= \dfrac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2! }{1! \cdot 1! \cdot 1! \cdot 1! \cdot 2!} \\
&= 360
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 360$
75. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Dalam sebuah kantong terdapat $m$ bola putih dan $n$ bola merah dengan $mn=120$ dan $m \lt n$. Jika diambil dua bola sekaligus, peluang terambilnya paling sedikit satu bola putih adalah $\dfrac{5}{7}$, maka nilai $m+n=\cdots$
$\begin{align}
(A)\ & 34 \\
(B)\ & 26 \\
(C)\ & 23 \\
(D)\ & 22 \\
(E)\ & 21 \\
\end{align}$
Dari dalam kantong akan diambil dua bola sekaligus, maka banyak kemungkinan yang terjadi adalah terpilih dua bola dari $(m+n)$ bola
$ \begin{align}
n(S) & = C_{2}^{m+n} \\
& = \dfrac{(m+n)!}{2! (m+n-2)!} \\
& = \dfrac{(m+n)(m+n-1)}{2}
\end{align} $
Dari pengambilan dua bola sekaligus, hasil yang diharapkan adalah paling sedikit satu bola putih, banyak kemungkinan yang diharapkan adalah terambil dua bola putih dari $m$ bola atau terambil satu bola putih dari $m$ bola dan satu bola merah dari $n$ bola.
Jika kita tuliskan banyak kemungkinan yang diharapkan terjadi, yaitu:
$ \begin{align}
n(E) & = C_{2}^{m}+C_{1}^{m} \cdot C_{1}^{n} \\
& = \dfrac{m!}{2! (m-2)!} + \dfrac{m!}{1! (m-1)!} \cdot \dfrac{n!}{1! (n-1)!} \\
& = \dfrac{m (m-1)}{2} + m \cdot n \\
& = \dfrac{m (m-1)}{2} + 120 \\
& = \dfrac{m (m-1)+240}{2}
\end{align} $
Peluang kejadian $E$ paling sedikit satu bola putih adalah $\dfrac{5}{7}$, sehingga berlaku:
$\begin{align}
P(E) & = \dfrac{n(E)}{n(S)} \\
\dfrac{5}{7} & = \dfrac{\dfrac{m (m-1)+240}{2}}{\dfrac{(m+n)(m+n-1)}{2}} \\
\dfrac{5}{7} & = \dfrac{ m (m-1)+240}{ (m+n)(m+n-1) }
\end{align}$
Dari persamaan di atas, dengan mensubstitusi nilai $n=\dfrac{120}{m}$ sehingga kita peroleh sebuah persamaan kudrat dengan variabel $m$. Lalu dengan memfaktorkan akan kita peroleh nilai $m$ lalu nilai $n$.
Dengan sedikit bernalar, untuk melewati beberapa tahap di atas dapat kita gunakan data $mn=120$ dan $m \lt n$. Berdasarkan data tersebut, nilai $(m,n)$ yang mungkin hanya ada tiga yaitu $(10,12)$, $(5,24)$ dan $(2,60)$.
Lalu dengan menguji nilai-nilai $(10,12)$, $(5,24)$ dan $(2,60)$ ke $\dfrac{5}{7} = \dfrac{ m (m-1)+240}{ (m+n)(m+n-1) }$ kita peroleh $m=10$ dan $n=12$, sehingga nilai $m+n=22$
$\therefore$ Pilihan yang sesuai $(D)\ 22$
76. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Di dalam sebuah kotak terdapat $m$ bola merah dan $n$ bola putih dengan $m+n=16$. Jika bola diambil dua bola sekaligus secara acak dari dalam kotak, maka peluang terambil dua bola tersebut berbeda warna adalah $\dfrac{1}{2}$. Nilai dari $m^{2}+n^{2}$ adalah
$\begin{align}
(A)\ & 200 \\
(B)\ & 160 \\
(C)\ & 146 \\
(D)\ & 136 \\
(E)\ & 128 \\
\end{align}$
Dari dalam kantong akan diambil dua bola sekaligus, maka banyak kemungkinan yang terjadi adalah terpilih dua bola dari $m+n$ bola
$ \begin{align}
n(S) & = C_{2}^{m+n} = C_{2}^{16} \\
& = \dfrac{16!}{2! (16-2)!} \\
& = 120
\end{align} $
Dari pengambilan dua bola sekaligus, hasil yang diharapkan adalah kedua bola berbeda warna, banyak kemungkinan yang diharapkan adalah terambil satu bola putih dari $m$ bola dan satu bola merah dari $n$ bola.
Jika kita tuliskan banyak kemungkinan yang diharapkan terjadi, yaitu:
$ \begin{align}
n(E) & =C_{1}^{m} \cdot C_{1}^{n} \\
& = \dfrac{m!}{1! (m-1)!} \cdot \dfrac{n!}{1! (n-1)!} \\
& = m \cdot n
\end{align} $
Peluang kejadian $E$ kedua bola berbeda warna adalah $\dfrac{1}{2}$, sehingga berlaku:
$\begin{align}
P(E) & = \dfrac{n(E)}{n(S)} \\
\dfrac{1}{2} & = \dfrac{mn}{120} \\
mn & = 60 \\
\hline
m^{2}+n^{2} & = (m+n)^{2}-2mn \\
& = 16^{2}-2(60) \\
& = 256-120 \\
& = 136
\end{align}$
$\therefore$ Pilihan yang sesuai $(D)\ 136$
77. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Dalam sebuah kotak terdapat bola merah dengan jumlah $2n$ dan bola putih dengan jumlah $3n$. Jika dilakukan pengambilan dua bola sekaligus dengan peluang terambilnya warna berbeda adalah $\dfrac{18}{35}$, maka nilai $\dfrac{5n-1}{n}$ adalah...
$\begin{align}
(A)\ & \dfrac{12}{3} \\
(B)\ & \dfrac{13}{3} \\
(C)\ & \dfrac{14}{3} \\
(D)\ & \dfrac{15}{3} \\
(E)\ & \dfrac{16}{3}
\end{align}$
Dari dalam kantong akan diambil dua bola sekaligus, maka banyak kemungkinan yang terjadi adalah terpilih dua bola dari $5n$ bola
$ \begin{align}
n(S) & = C_{2}^{5n} \\
& = \dfrac{(5n)!}{2! (5n-2)!} \\
& = \dfrac{(5n)(5n-1)}{2}
\end{align} $
Dari pengambilan dua bola sekaligus, hasil yang diharapkan adalah kedua bola berbeda warna, banyak kemungkinan yang diharapkan adalah terambil satu bola merah dari $2n$ bola dan satu bola putih dari $3n$ bola.
Jika kita tuliskan banyak kemungkinan yang diharapkan terjadi, yaitu:
$ \begin{align}
n(E) & =C_{1}^{2n} \cdot C_{1}^{3n} \\
& = \dfrac{(2n)!}{1! (2n-1)!} \cdot \dfrac{(3n)!}{1! (3n-1)!} \\
& = (2n) (3n) =6n^{2}
\end{align} $
Peluang kejadian $E$ kedua bola berbeda warna adalah $\dfrac{18}{35}$, sehingga berlaku:
$\begin{align}
P(E) & = \dfrac{n(E)}{n(S)} \\
\dfrac{18}{35} & = \dfrac{6n^{2}}{\dfrac{(5n)(5n-1)}{2}} \\
\dfrac{18}{35} & = \dfrac{12n^{2}}{ (5n)(5n-1)} \\
\dfrac{9}{7} & = \dfrac{6n^{2}}{ (n)(5n-1)} \\
45n^{2}-9n & = 42n^{2} \\
3n^{2}-9n & = 0 \\
3n(n-3) & = 0 \\
n=0\ &\ n= 3 \\
\hline
\dfrac{5n-1}{n} & = \dfrac{5n-1}{n} \\
& = \dfrac{5(3)-1}{3}= = \dfrac{14}{3}
\end{align}$
$\therefore$ Pilihan yang sesuai $(C)\ \dfrac{14}{3}$
78. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Dalam sebuah kantong terdapat $m$ bola putih dan $n$ bola merah dengan $mn=54$. Jika diambil dua bola secara sekaligus dan peluang terambilnya kedua bola berbeda warna adalah $\dfrac{18}{35}$, maka $m+n=\cdots$
$\begin{align}
(A)\ & 9 \\
(B)\ & 15 \\
(C)\ & 21 \\
(D)\ & 29 \\
(E)\ & 55
\end{align}$
Dari dalam kantong akan diambil dua bola sekaligus, maka banyak kemungkinan yang terjadi adalah terpilih dua bola dari $(m+n)$ bola
$ \begin{align}
n(S) & = C_{2}^{m+n} \\
& = \dfrac{(m+n)!}{2! (m+n-2)!} \\
& = \dfrac{(m+n)(m+n-1)}{2}
\end{align} $
Dari pengambilan dua bola sekaligus, hasil yang diharapkan adalah kedua bola berbeda warna, banyak kemungkinan yang diharapkan adalah terambil satu bola putih dari $m$ bola dan satu bola merah dari $n$ bola.
Jika kita tuliskan banyak kemungkinan yang diharapkan terjadi, yaitu:
$ \begin{align}
n(E) & =C_{1}^{m} \cdot C_{1}^{n} \\
& = \dfrac{m!}{1! (m-1)!} \cdot \dfrac{n!}{1! (n-1)!} \\
& = m \cdot n
\end{align} $
Peluang kejadian $E$ kedua bola berbeda warna adalah $\dfrac{18}{35}$, sehingga berlaku:
$\begin{align}
P(E) & = \dfrac{n(E)}{n(S)} \\
\dfrac{18}{35} & = \dfrac{mn}{\dfrac{(m+n)(m+n-1)}{2}} \\
\dfrac{18}{35} & = \dfrac{2(54)}{ (m+n)(m+n-1)} \\
\dfrac{1}{35} & = \dfrac{ 6 }{ (m+n)(m+n-1)} \\
(m+n)(m+n-1) & = (35)(6) \\
(m+n)(m+n-1) & = (7)(5)(3)(2) \\
(m+n)(m+n-1) & = (15)(14)
\end{align}$
$\therefore$ Pilihan yang sesuai $(B)\ 15$
79. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Dua buah dadu dilempar sekaligus. Peluang muncul mata dadu berjumlah lebih dari $5$ dan kelipattan $3$ adalah...
$\begin{align}
(A)\ & 9 \\
(B)\ & 15 \\
(C)\ & 21 \\
(D)\ & 29 \\
(E)\ & 55
\end{align}$
Pada pelemparan dua buah dadu hasil yang mungkin atau ruang sampelnya adalah: ${(1,1),\ (1,2),\ (1,3), \cdots (5,6),(6,6)}$.
Banyak anggota ruang sampel atau $n(S)=36$
Hasil yang diharapkan muncul mata dadu berjumlah lebih dari $5$ dan kelipatan $3$. Untuk mempermudah cukup kita analisis kelipatan tiga lebih dari $5$ yaitu yang jumlahnya $6, 9, 12$ anggotanya adalah: $(1,5)$, $(2,4)$, $(3,3)$, $(4,2)$, $(5,1)$, $(3,6)$, $(4,5)$, $(5,4)$, $(6,3)$, dan $(6,6)$.
Banyak anggota kejadian yang diharapkan atau $n(E)=10$
Peluang kejadian $E$, $P(E) = \dfrac{n(E)}{n(S)} = \dfrac{10}{36}$
$\therefore$ Pilihan yang sesuai $(B)\ \dfrac{10}{36}$
80. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Dinda memiliki password yang terdiri dari satu huruf diantara huruf-huruf $a,i,u,e,o$. Peluang Dianda gagal mengetikkan password-nya adalah...
$\begin{align}
(A)\ & \dfrac{5}{7} \\
(B)\ & \dfrac{4}{5} \\
(C)\ & \dfrac{3}{5} \\
(D)\ & \dfrac{2}{5} \\
(E)\ & \dfrac{1}{5}
\end{align}$
Pasaword Dinda hanya terdiri dari satu huruf saja sehingga $n(E)=1$. Hasil yang mungkin terketik adalah $a,i,u,e,o$, banyak anggota ruang sampel atau $n(S)=5$.
Peluang Dinda gagal adalah:
$\begin{align}
P(E') & =1-P(E) \\
& =1- \dfrac{n(E)}{n(S)} \\
& =1- \dfrac{1}{5}= \dfrac{4}{5}
\end{align}$
$\therefore$ Pilihan yang sesuai $(B)\ \dfrac{4}{5}$
81. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Peluang sukses seseorang melemparkan bola ke keranjang basket adalah $\dfrac{3}{5}$. Jika dia melemparkan bola tersebut tiga kali, maka peluang sukses semua lemparan tersebut itu adalah...
$\begin{align}
(A)\ & \dfrac{8}{125} \\
(B)\ & \dfrac{27}{125} \\
(C)\ & \dfrac{2}{5} \\
(D)\ & \dfrac{3}{5} \\
(E)\ & 1
\end{align}$
Peluang lemparan berhasil adalah $\dfrac{3}{5}$, sehingga peluang gagal yaitu $1-\dfrac{3}{5}= \dfrac{2}{5}$
KArena yang diminta adalah peluang ketiga lemparan berhasil, secara kalimat kita jawab, lemparan pertama berhasil dan lemparan kedua berhasil dan lemparan ketiga berhasil.
Jika kita tuliskan peluang ketiganya berhasil adalah:
$ \begin{align}
P(E) & = P(I) \cdot P(II) \cdot P(III) \\
& = \dfrac{3}{5} \cdot \dfrac{3}{5} \cdot \dfrac{3}{5} \\
& = \dfrac{27}{125}
\end{align} $
$\therefore$ Pilihan yang sesuai $(B)\ \dfrac{27}{125}$
82. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Sebuah kotak berisi $10$ bola berwarna merah dan berwarna biru. Diambil dua bola sekaligus secara acak. Jika peluang terambilnya sedikitnya $1$ bola merah adalah $\dfrac{1}{5}$, maka banyaknya bola biru adalah...
$\begin{align}
(A)\ & 1 \\
(B)\ & 3 \\
(C)\ & 5 \\
(D)\ & 7 \\
(E)\ & 9 \\
\end{align}$
Dari dalam kantong akan diambil dua bola sekaligus, maka banyak kemungkinan yang terjadi adalah terpilih $2$ bola dari $10$ bola
$ \begin{align}
n(S) & = C_{2}^{10} \\
& = \dfrac{10!}{2! (10-2)!} \\
& = \dfrac{10 \cdot 9 \cdot 8!}{2 \cdot 8!}=45
\end{align} $
Hasil yang diharapkan adalah paling sedikit satu bola merah, banyak kemungkinan yang diharapkan adalah terambil dua bola merah dari banyak bola merah atau terambil satu bola merah dari banyak bola merah dan satu bola biru dari banyak bola biru.
Jika kita misalkan banyak bola merah adalam $m$, sehingga banyak bola biru adalah $10-m$ sehingga banyak kemungkinan yang diharapkan terjadi, yaitu:
$ \begin{align}
n(E) & = C_{2}^{m}+C_{1}^{m} \cdot C_{1}^{10-m} \\
& = \dfrac{m(m-1)(m-2)!}{2! \cdot (m-2)!} + \dfrac{m(m-1)!}{1! \cdot (m-1)!} \cdot \dfrac{ (10-m)!}{1! (10-m-1)!} \\
& = \dfrac{m(m-1) }{2 } + m \cdot (10-m) \\
& = \dfrac{m^{2}-m }{2 } + \dfrac{20m-2m^{2})}{2 } \\
& = \dfrac{-m^{2}+19m }{2 }
\end{align} $
Peluang kejadian $E$ adalah $\dfrac{1}{5}$, sehingga berlaku:
$\begin{align}
P(E) & = \dfrac{n(E)}{n(S)} \\
\dfrac{1}{5} & = \dfrac{\dfrac{-m^{2}+19m }{2 }}{45} \\
\dfrac{1}{5} & = \dfrac{-m^{2}+19m }{2 \cdot 45 } \\
\dfrac{18}{90} & = \dfrac{-m^{2}+19m }{90} \\
\hline
-m^{2}+19m & = 18 \\
m^{2}-19m+18 & = 0 \\
(m-1)(m-18) & = 0 \\
m=1 \ \text{atau} m=18 &
\end{align}$
Banyak bola biru saat $m=1$ adalah $10-1=9$
$\therefore$ Pilihan yang sesuai $(E)\ 9$
83. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Nilai matematika $7$ orang siswa, setelah diurutkan adalah sebagai berikut: $a,b,c,7,d,d,9$. Jika rata-rata semua siswa $7$ dan rata-rata $3$ nilai terendah $\dfrac{17}{3}$, maka rata-rata $3$ nilai terbaik adalah...
$\begin{align}
(A)\ & 8 \\
(B)\ & \dfrac{25}{3} \\
(C)\ & \dfrac{26}{3} \\
(D)\ & 9 \\
(E)\ & \dfrac{28}{3}
\end{align}$
Nilai keseluruhan setelah diurutkan $a,b,c,7,d,d,9$
$\begin{align}
\bar{x} &= \dfrac{a+b+c+7+d+d+9}{7} \\
7 &= \dfrac{a+b+c+d+d+16}{7} \\
49 &= a+b+c+d+d+16 \\
33 &= a+b+c+d+d
\end{align}$
Rata-rata $3$ nilai terendah $\dfrac{17}{3}$
$\begin{align}
\bar{x} &= \dfrac{a+b+c}{3} \\
\dfrac{17}{3} &= \dfrac{a+b+c}{3} \\
17 &= a+b+c \\
\hline
33 &= a+b+c+d+d\\
33 &= 17+d+d\\
16 &=2d \\
8 &= d
\end{align}$
Rata-rata $3$ nilai terbaik adalah
$\begin{align}
\bar{x} &= \dfrac{d+d+9}{3} \\
&= \dfrac{8+8+9}{3} \\
&= \dfrac{25}{3}
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ \dfrac{25}{3}$
84. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui bilangan $a,b,5,3,7,6,6,6,6,6$ dengan rata-rata $5$ dan variansinya $\dfrac{13}{5}$. Nilai $ab=\cdots$
$\begin{align}
(A)\ & 2 \\
(B)\ & 4 \\
(C)\ & 6 \\
(D)\ & 8 \\
(E)\ & 10
\end{align}$
Catatan calon guru yang mungkin bermanfaat tentang statistika data tunggal terkhusus Varians untuk data tunggal. Rumus varians data untuk populasi yaitu
$S^{2} = \dfrac{\sum_{i=1}^{n}(\overline{x}-x_{i})^{2}}{n}$ atau $S^{2}=\overline{x^{2}}-(\overline{x})^{2}$
Dari data pada soal diketahui $\overline{x}=5$, sehingga berlaku:
$\begin{align}
\overline{x} &= \dfrac{a+b+5+3+7+6 \cdot 5}{10} \\
5 &= \dfrac{a+b+45}{10} \\
50 &= a+b+45 \\
5 &= a+b \\
\end{align}$
Diketahui variansinya $\dfrac{13}{5}$, sehingga berlaku:
$\begin{align}
S^{2} = \dfrac{\sum_{i=1}^{n}(\bar{x}-x_{i})^{2}}{n} \\
\dfrac{13}{5} &= \dfrac{(5-a)^{2}+(5-b)^{2}+(5-5)^{2}+(5-3)^{2}+(5-7)^{2}+5 \cdot (5-6)^{2}}{10} \\
26 &= a^{2}-10a+25+b^{2}-10b+25+0+4+4+5 \\
26 &= a^{2}+b^{2}-10(a+b) +63 \\
26-63 &= (a +b)^{2}-2ab-10(a+b) \\
-37 &= (5)^{2}-2ab-10(5) \\
-37 &= 25-2ab-50 \\
2ab &= -25+37=12 \\
ab &= 6
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 6$
85. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Bilangan-bilangan bulat $a,a+1,a+1,7,b,b,9$ telah diurutkan dari terkecil ke yang terbesar. Jika rata-rata semua bilangan itu adalah $7$ dan simpangan rata-ratanya $\dfrac{8}{7}$, maka $a+b-1=\cdots$
$\begin{align}
(A)\ & 10 \\
(B)\ & 11 \\
(C)\ & 12 \\
(D)\ & 13 \\
(E)\ & 14
\end{align}$
Catatan calon guru yang mungkin bermanfaat tentang statistika data tunggal terkhusus simpangan rata-rata untuk data tunggal. Rumus simpangan rata-rata (deviasi rata-rata) yaitu
$ SR=\dfrac{\sum_{i}^{n}\left | x_{i}-\overline{x} \right |}{n}$
Dari data pada soal diketahui $\overline{x}=7$, sehingga berlaku:
$\begin{align}
\overline{x} &= \dfrac{a+a+1+a+1+7+b+b+9}{7} \\
7 &= \dfrac{3a+2b+18}{7} \\
49 &= 3a+2b+18 \\
31 &= 3a+2b
\end{align}$
Diketahui simpangan rata-ratanya $\dfrac{8}{7}$, sehingga berlaku:
$\begin{align}
SR &=\dfrac{\sum_{i}^{n}\left | x_{i}-\overline{x} \right |}{n} \\
\dfrac{8}{7} &=\dfrac{\left | a-7 \right |+2\left | a+1-7 \right |+\left | 7-7 \right |+2\left | b-7 \right |+\left | 9-7 \right | }{7} \\
8 &= 7-a+2(6-a)+0+2(b-7)+2\\
8 &= 7-a+12-2a+2b-14+2\\
1 &= -3a+2b
\end{align}$
$\begin{array}{c|c|cc}
3a+2b = 31 & \\
-3a+2b = 1 & (+) \\
\hline
4b = 32 & \\
b = 8 & \\
a = 5
\end{array} $
Nilai dari $a+b-1=8+5-1=12$
$\therefore$ Pilihan yang sesuai adalah $(C)\ 12$
86. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Rata-rata $50$ bilangan dalam bentuk $m$ dan $n$ adalah $x$. Jika rata-rata $m$ adalah $a$ maka rata-rata $n$ adalah...
$\begin{align}
(A)\ & \dfrac{50x-am}{50a-m} \\
(B)\ & \dfrac{50mx-a}{50m-a} \\
(C)\ & \dfrac{50mx-am}{50m-a} \\
(D)\ & \dfrac{50x-am}{50-m} \\
(E)\ & \dfrac{50ax-am}{50a-m}
\end{align}$
Catatan calon guru yang mungkin bermanfaat tentang statistika data tunggal terkhusus rata-rata rata-rata gabungan. Rumus rata-rata gabungan yaitu
$\begin{align}
\overline{x}_{gab} &=\dfrac{\overline{x}_{m} \cdot n_{m}+\overline{x}_{n} \cdot n_{n}}{ {n}_{m} + n_{n}} \\
x &=\dfrac{\overline{x}_{m} \cdot n_{m}+\overline{x}_{n} \cdot n_{n}}{ 50} \\
50 x &= \overline{x}_{m} \cdot n_{m}+\overline{x}_{n} \cdot n_{n} \\
50 x &= a \cdot n_{m}+ \overline{x}_{n} \cdot \left( 50-n_{m} \right) \\
\overline{x}_{n} \cdot \left( 50-n_{m} \right) &= 50 x- a \cdot n_{m} \\
\overline{x}_{n} &= \dfrac{50 x- a \cdot n_{m}}{ 50-n_{m}} \\
\end{align}$
Untuk data $m$ dengan rata-rata $a$ berlaku:
$\begin{align}
\overline{x}_{m} &= \dfrac{m}{n_{m}} \\
a &= \dfrac{m}{n_{m}} \\
n_{m} &= \dfrac{m}{a}
\end{align}$
$\begin{align}
\overline{x}_{n}&= \dfrac{50 x- a \cdot n_{m}}{ 50-n_{m}} \\
\overline{x}_{n}&= \dfrac{50 x- a \cdot \dfrac{m}{a}}{ 50-\dfrac{m}{a}} \\
\overline{x}_{n}&= \dfrac{50 x- m}{ \dfrac{50a-m}{a}} \\
\overline{x}_{n}&= \dfrac{50a x- am}{ 50a-m }
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(E)\ \dfrac{50ax-am}{50a-m}$
87. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Sekumpulan bilangan memiliki nilai rata-rata $25$ dengan jangkauan $10$. Jika setiap bilangan tersebut dikurangi dengan $a$, kemudian hasinya dibagi dengan $b$, akan menghasilkan bialngan baru dengan rata-rata $15$ dan jangkauan $5$. Nilai $2a+5b$ adalah...
$\begin{align}
(A)\ & 6 \\
(B)\ & 5 \\
(C)\ & 4 \\
(D)\ & 3 \\
(E)\ & 2
\end{align}$
Misalkan sekumpulan bilangan sebelum mendapat tindakan kita sebut "Data Lama": $x_{1},\ x_{2},\ x_{3},\ \cdots\ x_{n}$
$\begin{align}
\bar{x}_{L} &=\dfrac{x_{1}+x_{2}+x_{3}+ \cdots + x_{n}}{n} \\
25 &=\dfrac{x_{1}+x_{2}+x_{3}+ \cdots + x_{50}}{25} \\
25n &=x_{1}+x_{2}+x_{3}+ \cdots + x_{n} \\
\hline
R &= x_{n}-x_{1} \\
10 &= x_{n}-x_{1}
\end{align}$
Misalkan sekumpulan bilangan setelah mendapat tindakan kita sebut "Data Baru", dimana setiap data lama dikurangi dengan $a$, kemudian hasinya dibagi dengan $b$.
$\dfrac{x_{1}-a}{b},\ \dfrac{x_{2}-a}{b},\ \dfrac{x_{3}-a}{b},\ \cdots\ \dfrac{x_{n}-a}{b}$
$\begin{align}
\bar{x}_{B} &=\dfrac{\dfrac{x_{1}-a}{b}+\dfrac{x_{2}-a}{b}+\dfrac{x_{3}-a}{b}+ \cdots + \dfrac{x_{n}-a}{b}}{n} \\
15 &=\dfrac{\dfrac{x_{1}-a}{b}+\dfrac{x_{2}-a}{b}+\dfrac{x_{3}-a}{b}+ \cdots + \dfrac{x_{n}-a}{b}}{n} \\
15n &= \dfrac{x_{1}-a}{b}+\dfrac{x_{2}-a}{b}+\dfrac{x_{3}-a}{b}+ \cdots + \dfrac{x_{n}-a}{b} \\
15nb &= x_{1}-a + x_{2}-a + x_{3}-a + \cdots + x_{n}-a \\
15nb &= x_{1} + x_{2} + x_{3} + \cdots + x_{n}- an \\
15nb &= 25n - an \\
15 b &= 25 - a \\
15 b +a &= 25
\end{align}$
$\therefore$ Jika sudah paham langkah-langkah diatas untuk berikutnya sudah bisa menggunakan aturan bahwa rata-rata berubah mengikuti "tindakan" yang diberikan kepada setiap data.
Jika data lama rata-ratanya $25$ lalu setiap data dikurang $a$ dan dibagi $b$ maka rata-rata baru adalah $15=\dfrac{25-a}{b}$
$\begin{align}
R &= \dfrac{x_{n}-a}{b}-\dfrac{x_{1}-a}{b} \\
5 &= \dfrac{x_{n}-x_{1}}{b} \\
5 &= \dfrac{10}{b} \\
5b &= 10 \\
b &= 2
\end{align}$
$\therefore$ Jika sudah paham langkah-langkah diatas untuk berikutnya sudah bisa menggunakan aturan bahwa jangkauan berubah mengikuti "tindakan perkalian atau pembagian" yang diberikan kepada setiap data.
Jika data lama jangkauannya $10$ lalu setiap data dikurang $a$ dan dibagi $b$ maka jangkauan baru adalah $5 = \dfrac{10}{b}$.
Berdasarkan apa yang kita peroleh di atas $b = 2$ dan $15 b +a = 25$ maka $2a+5b=5$
$\therefore$ Pilihan yang sesuai adalah $(B)\ 5$
88. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika garis $y=ax+b$ digeser ke atas sejauh $2$ satuan kemudian dicerminkan terhadap sumbu $x$, maka bayangannya adalah garis $y=-2x+1$. Nilai $3a-2b$ adalah...
$\begin{align}
(A)\ & -8 \\
(B)\ & -4 \\
(C)\ & -1 \\
(D)\ & 8 \\
(E)\ & 12
\end{align}$
Catatan calon guru tentang Transformasi Geometri yang mungkin membantu yaitu;
- Jika titik $A(x,y)$ ditranslasi sejauh $T=\begin{pmatrix}
a \\b
\end{pmatrix}$ maka: bayangan yang dihasilkan:
$\left( x',y' \right)= \begin{pmatrix}
a \\b
\end{pmatrix}+(x,y)=\left( x+a,x+b \right)$ - Jika titik $A(x,y)$ dicerminkan terhadap sumbu-$X$ ($y=0$) maka bayangan yang dihasilkan:
$A'=\begin{pmatrix}
x'\\y'
\end{pmatrix}=\begin{pmatrix}
1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix}$
0 \\ 2
\end{pmatrix}$, setelah pergesaran diperoleh $x'=x+0$ dan $y'=y+2$ sehingga persamaan garis $y=ax+b$ berubah menjadi $y'-2=a(x'+0)+b$ atau $y'=ax'+b+2$.
Garis $y=ax+b+2$ dicerminkan terhadap sumbu-$X$ dan menghasilkan $y=-2x+1$
$\begin{align}
\begin{pmatrix}
x'\\y'
\end{pmatrix} &=\begin{pmatrix}
1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix} \\
\begin{pmatrix}
x' \\ y'
\end{pmatrix} &=\begin{pmatrix}
x \\ -y
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh $x'=x$ dan $y'=-y$
$\begin{align}
y &= ax+b+2 \\
-y' &= ax'+b+2 \\
-y &= ax +b+2 \\
y &= -ax -b-2
\end{align} $
Persamaan garis $y = -ax -b-2$ ekuivalen dengan $y=-2x+1$, sehingga dapat kita simpulkan:
$\begin{align}
y =& -ax -b-2 \\
y =& -2x+1 \\
\hline
a &=2 \\
-b-2 &=1 \\
b &=3 \\
\hline
3a-2b &= 3(2)-2(-3) \\
&= 12
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(E)\ 12$
89. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika $y=2x+1$ digeser sejauh $a$ satuan ke kanan dan sejauh $b$ satuan ke bawah, kemudian dicerminkan terhadap sumbu-$X$, bayangannya menjadi $y=ax-b$. Nilai $a+b=\cdots$
$\begin{align}
(A)\ & -\dfrac{1}{2} \\
(B)\ & -3 \\
(C)\ & 4 \\
(D)\ & 3 \\
(E)\ & -\dfrac{1}{2}
\end{align}$
Catatan calon guru tentang Transformasi Geometri yang mungkin membantu yaitu;
- Jika titik $A(x,y)$ ditranslasi sejauh $T=\begin{pmatrix}
a \\b
\end{pmatrix}$ maka: bayangan yang dihasilkan:
$\left( x',y' \right)= \begin{pmatrix}
a \\b
\end{pmatrix}+(x,y)=\left( x+a,x+b \right)$ - Jika titik $A(x,y)$ dicerminkan terhadap sumbu-$X$ ($y=0$) maka bayangan yang dihasilkan:
$A'=\begin{pmatrix}
x'\\y'
\end{pmatrix}=\begin{pmatrix}
1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix}$
a \\ -b
\end{pmatrix}$ sehingga setelah pergesaran diperoleh $x'=x+a$ dan $y'=y-b$ sehingga persamaan garis $y=2x+1$ berubah menjadi $y'+b=2(x'-a)+1$ atau $y'=2x'-2a-b+1$.
Garis $y =2x -2a-b+1$ dicerminkan terhadap sumbu-$X$ dan menghasilkan $y=ax-b$
$\begin{align}
\begin{pmatrix}
x'\\y'
\end{pmatrix} &=\begin{pmatrix}
1 & 0\\
0 & -1
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix} \\
\begin{pmatrix}
x' \\ y'
\end{pmatrix} &=\begin{pmatrix}
x \\ -y
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh $x'=x$ dan $y'=-y$
$\begin{align}
y &=2x -2a-b+1 \\
-y' &= 2x'-2a-b+1 \\
-y &= 2x -2a-b+1 \\
y &= -2x +2a+b-1
\end{align} $
Persamaan garis $y= -2x +2a+b-1$ ekuivalen dengan $y=ax-b$, sehingga dapat kita simpulkan:
$\begin{align}
y =& -2x +2a+b-1 \\
y =& ax-b \\
\hline
a &=-2 \\
2a+b-1 &=-b \\
2(-2) -1 &=-2b \\
\dfrac{5}{2} &= b \\
\hline
a+b &= -2+\dfrac{5}{2} \\
&= \dfrac{1}{2}
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(E)\ \dfrac{1}{2}$
90. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Garis $y=2x+1$ dirotasi searah jarum jam sebesar $90^{\circ}$ terhadap titik asal, kemudian digeser ke atas sejauh $b$ satuan dan ke kiri sejauh $a$ satuan, bayangannya menjadi $x-ay=b$. Nilai $a+b=\cdots$
$\begin{align}
(A)\ & 5 \\
(B)\ & 2 \\
(C)\ & 0 \\
(D)\ & -2 \\
(E)\ & -5
\end{align}$
Catatan calon guru tentang Transformasi Geometri yang mungkin membantu yaitu;
- Jika titik $A(x,y)$ ditranslasi sejauh $T=\begin{pmatrix}
a \\b
\end{pmatrix}$ maka: bayangan yang dihasilkan:
$\left( x',y' \right)= \begin{pmatrix}
a \\b
\end{pmatrix}+(x,y)=\left( x+a,x+b \right)$ - Matriks Transformasi rotasi pusat $O(0,0)$ sebesar $270^{\circ}$, $T: \begin{pmatrix}
cos\ 270 & -sin\ 270\\
sin\ 270 & cos\ 270
\end{pmatrix}=\begin{pmatrix}
0 & 1\\
-1 & 0
\end{pmatrix}$.
$\begin{align}
\begin{pmatrix}
x'\\y'
\end{pmatrix} &=\begin{pmatrix}
0 & 1\\
-1 & 0
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix} \\
\begin{pmatrix}
x' \\ y'
\end{pmatrix} &=\begin{pmatrix}
y \\ -x
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh $x'= y$ dan $y'=-x$
$\begin{align}
y &= 2x+1 \\
x' &= 2(-y')+1 \\
x &= -2y +1
\end{align} $
Garis $ x= -2y +1$ digeser ke atas sejauh $b$ dan ke kiri sejauh $a$ sama dengan ditranslasi sejauh $T=\begin{pmatrix}
-a \\ b
\end{pmatrix}$ sehingga setelah pergesaran diperoleh $x'=x-a$ dan $y'=y+b$ sehingga persamaan garis $ x=-2y+1$ berubah menjadi $ x'+a =-2(y'-b)+1$ atau $ x'+a=-2y'+2b+1$.
Persamaan garis $x+a=-2y +2b+1$ ekuivalen dengan $x-ay=b$, sehingga dapat kita simpulkan:
$\begin{align}
x +a=& -2y +2b+1 \\
x +2y = & -a +2b+1 \\
x-ay =& b \\
\hline
a &= -2 \\
-a+2b+1 &= b \\
2 +1 &= -b \\
-3 &= b \\
\hline
a+b &= -2-3 \\
&= -5
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(E)\ -5$
91. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Parabola $y=x^{2}-6x+8$ digeser ke kanan sejauh $2$ satuan searah dengan sumbu-$X$ dan digeser ke bawah sejauh $3$ satuan searah sumbu-$Y$. Jika parabola hasil pergeseran ini memotong sumbu-$X$ di $x_{1}$ dan $x_{2}$, maka nilai $x_{1}+x_{2}=\cdots$
$\begin{align}
(A)\ & 7 \\
(B)\ & 8 \\
(C)\ & 9 \\
(D)\ & 10 \\
(E)\ & 11
\end{align}$
Catatan calon guru tentang Transformasi Geometri dan tentang persamaan kuadrat yang mungkin membantu yaitu;
- Jika titik $A(x,y)$ ditranslasi sejauh $T=\begin{pmatrix}
a \\b
\end{pmatrix}$ maka: bayangan yang dihasilkan:
$\left( x',y' \right)= \begin{pmatrix}
a \\b
\end{pmatrix}+(x,y)=\left( x+a,x+b \right)$ - Akar-akar $ax^{2}+bx+c=0$ adalah $x_{1}$ dan $x_{2}$ maka berlaku $x_{1}+x_{2}=-\dfrac{b}{a}$
2 \\ -3
\end{pmatrix}$ sehingga setelah pergesaran diperoleh $x'=x+2$ dan $y'=y-3$ sehingga berlaku:
$\begin{align}
y &=x^{2}-6x+8 \\
y'+3 &=(x'-2)^{2}-6(x'-2)+8 \\
\hline
y +3 &=(x -2)^{2}-6(x-2)+8 \\
y &= x^{2}-4x+4-6x+12+8-3 \\
y &= x^{2}-10x+21 \\
\hline
0 &= x^{2}-10x+21 \\
x_{1}+x_{2} &= -\dfrac{b}{a} \\
&= -\dfrac{-10}{1} \\
&= 10
\end{align} $
$\therefore$ Pilihan yang sesuai adalah $(D)\ 10$
92. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Garis $y= x+2$ digeser ke kiri sepanjang sumbu-$X$ sejauh $4$ satuan kemudian diputar $90^{\circ}$ searah jarum jam dengan pusat $O(0,0)$. Jika persamaan garis terakhir adalah $y=mx+b$, maka $m \cdot b =\cdots$
$\begin{align}
(A)\ & 6 \\
(B)\ & 4 \\
(C)\ & 2 \\
(D)\ & -4 \\
(E)\ & -6
\end{align}$
Catatan calon guru tentang Transformasi Geometri yang mungkin membantu yaitu;
- Jika titik $A(x,y)$ ditranslasi sejauh $T=\begin{pmatrix}
a \\b
\end{pmatrix}$ maka: bayangan yang dihasilkan:
$\left( x',y' \right)= \begin{pmatrix}
a \\b
\end{pmatrix}+(x,y)=\left( x+a,x+b \right)$ - Matriks Transformasi rotasi pusat $O(0,0)$ sebesar $270^{\circ}$, $T: \begin{pmatrix}
cos\ 270 & -sin\ 270\\
sin\ 270 & cos\ 270
\end{pmatrix}=\begin{pmatrix}
0 & 1\\
-1 & 0
\end{pmatrix}$.
-4 \\ 0
\end{pmatrix}$ sehingga setelah pergesaran diperoleh $x'=x-4$ dan $y'=y+0$ sehingga persamaan garis $y=x+2$ berubah menjadi $ y' =x'+4+2$ atau $y=x+6$.
Garis $y=x+6$ dirotasi searah jarum jam sebesar $90^{\circ}$ sama dengan sejauh $270^{\circ}$ berlawanan dengan jarum jam terhadap titik asal
$\begin{align}
\begin{pmatrix}
x'\\y'
\end{pmatrix} &=\begin{pmatrix}
0 & 1\\
-1 & 0
\end{pmatrix}\begin{pmatrix}
x\\y
\end{pmatrix} \\
\begin{pmatrix}
x' \\ y'
\end{pmatrix} &=\begin{pmatrix}
y \\ -x
\end{pmatrix}
\end{align}$
Dari kesamaan dua matriks di atas kita peroleh $x'= y$ dan $y'=-x$
$\begin{align}
y &= x+6 \\
x' &= (-y')+6 \\
x &= -y + 6 \\
y &= -x + 6
\end{align} $
Persamaan garis $y=-x+6$ ekuivalen dengan $y=mx+b$, sehingga dapat kita simpulkan $m=-1$ dan $b=6$ maka $m \cdot b=-6$
$\therefore$ Pilihan yang sesuai adalah $(E)\ -6$
93. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Sebuah balok $ABCD.EFGH$ memiliki panjang rusuk $AB=8$ dan $BC=CG=6$. Jika titik $P$ terletak di tengah rusuk $AB$ dan $\theta$ adalah sudut antara $EP$ dan $PG$, maka nilai $cos\ \theta$ adalah...
$\begin{align}
(A)\ & \dfrac{3}{\sqrt{286}} \\
(B)\ & \dfrac{5}{\sqrt{286}} \\
(C)\ & 0 \\
(D)\ & \dfrac{-3}{\sqrt{286}} \\
(E)\ & \dfrac{-5}{\sqrt{286}}
\end{align}$
Jika kita gambarkan Balok $ABCD.EFGH$, titik $P$ dan sudut $\theta$ seperti berikut ini:
Dari informasi pada gambar dan menggunakan teorema phytagoras kita peroleh:
- $AP=4$ dan $AE=6$ maka $EP=2\sqrt{13}$
- $PB=4$ dan $BC=6$ maka $PC=2\sqrt{13}$
- $PC=2\sqrt{13}$ dan $CG=6$ maka $PG=2\sqrt{22}$
- $EF=8$ dan $FG=6$ maka $EG=10$
$\begin{align}
EG^{2} &= EP^{2}+PG^{2}- 2 \cdot EP \cdot PG\ cos\ \theta \\
cos\ \theta &= \dfrac{EP^{2}+PG^{2}-EG^{2}}{2 \cdot EP \cdot PG} \\
&= \dfrac{\left( 2\sqrt{13} \right)^{2}+\left( 2\sqrt{22} \right)^{2}-\left( 10 \right)^{2}}{2 \cdot 2\sqrt{13} \cdot 2\sqrt{22}} \\
&= \dfrac{52+88-100}{8 \sqrt{286}} \\
&= \dfrac{40}{8 \sqrt{286}} \\
&= \dfrac{5}{\sqrt{286}} \\
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(B)\ \dfrac{5}{\sqrt{286}}$
94. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui balok $ABCD.EFGH$ dengan $AB=12\ cm$ dan $BC=18\ cm$ dan $CG=20\ cm$. $T$ adalah titik tengah $AD$. Jika $\theta$ adalah sudut antara garis $GT$ dengan bidang $ABCD$, maka nilai $cos\ \theta$ adalah...
$\begin{align}
(A)\ & \dfrac{1}{5} \\
(B)\ & \dfrac{2}{5} \\
(C)\ & \dfrac{3}{5} \\
(D)\ & \dfrac{4}{5} \\
(E)\ & \dfrac{5}{6}
\end{align}$
Jika kita gambarkan Balok $ABCD.EFGH$, titik $T$ dan sudut $\theta$ seperti berikut ini:
Dari informasi pada gambar dan menggunakan teorema phytagoras kita peroleh:
$\begin{align}
TC^{2} &= DT^{2}+CD^{2} \\
TC^{2} &= 9^{2}+12^{2} \\
TC &= \sqrt{225}=15 \\
\hline
TG^{2} &= TC^{2}+CG^{2} \\
TG^{2} &= (\sqrt{225})^{2}+20^{2} \\
TG &= \sqrt{225 +400}=25 \\
\end{align}$
Dengan menggunkan perbandingan trigonometri kita peroleh:
$\begin{align}
cos\ \theta &= \dfrac{TC}{TG} \\
&= \dfrac{15}{25} = \dfrac{3}{5}
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(C)\ \dfrac{3}{5}$
95. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diketahui kubus $ABCD.EFGH$ dengan panjang rusuk $2\ cm$. Jika $P$ titik tengah $AB$, $Q$ titik tengah $CG$, dan $R$ terletak pada $PD$ sehingga $QR$ tegak lurus dengan $PD$, maka panjang $QR$ adalah...$cm$
$\begin{align}
(A)\ & \sqrt{\dfrac{21}{5}} \\
(B)\ & \sqrt{\dfrac{21}{6}} \\
(C)\ & \sqrt{\dfrac{21}{9}} \\
(D)\ & \sqrt{\dfrac{21}{12}} \\
(E)\ & \sqrt{\dfrac{21}{15}}
\end{align}$
Jika kita gambarkan kubus $ABCD.EFGH$ dan titik $P,\ Q,\ R$ seperti berikut ini:
Dari informasi pada gambar dan menggunakan teorema phytagoras kita peroleh:
- $AP=1$ dan $AD=2$ maka $DP=\sqrt{5}$
- $CQ=1$ dan $CD=2$ maka $DQ=\sqrt{5}$
- $PB=1$ dan $BC=2$ maka $PC=\sqrt{5}$
- $CQ=1$ dan $PC=\sqrt{5}$ maka $PQ=\sqrt{6}$
Panjang $QR$ coba kita hitung dengan menggunakan luas segitiga.
$\begin{align}
[DPQ] &= [DPQ] \\
\dfrac{1}{2} \cdot DP \cdot QR &= \dfrac{1}{2} \cdot QP \cdot DS \\
\sqrt{5} \cdot QR &= \sqrt{6} \cdot \dfrac{1}{2}\sqrt{14} \\
QR &= \dfrac{\dfrac{1}{2}\sqrt{14} \cdot \sqrt{6}}{\sqrt{5}} \\
QR &= \sqrt{\dfrac{21}{5}}
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ \sqrt{\dfrac{21}{5}}$
96. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Diberikan fungsi $f(x)=2x^{3}+3x^{2}+6x+5$. Garis singgung kurva $y=f(x)$ di titik dengan absis $x=a$ dan $x=a+1$ saling sejajar. Jarak kedua garis singgung tersebut adalah...
$\begin{align}
(A)\ & \dfrac{5}{\sqrt{37}} \\
(B)\ & \dfrac{4}{\sqrt{37}} \\
(C)\ & \dfrac{3}{\sqrt{37}} \\
(D)\ & \dfrac{2}{\sqrt{37}} \\
(E)\ & \dfrac{1}{\sqrt{37}}
\end{align}$
Untuk menyelesaikan soal ini kita perlu sedikit catatan tentang turunan yaitu jika $y=f(x)$ maka $m=y'=f'(x)$.
Garis yang menyinggung fungsi $f(x)=2x^{3}+3x^{2}+6x+5$ di $x=a$ dan $x=a+1$ adalah sejajar sehingga gradien kedua garis adalah sama, sehingga berlaku:
$\begin{align}
m = f'(x) & = 6x^{2}+6x+6 \\
\hline
x=a\ & \rightarrow m= 6a^{2}+6a+6 \\
x=a+1\ & \rightarrow m= 6(a+1)^{2}+6(a+1)+6
\end{align}$
$\begin{align}
6a^{2}+6a+6 & = 6 a^{2}+12a+6+6 a+6+6 \\
6a^{2}+6a+6 & = 6 a^{2}+18a+18 \\
-12 & = 12a \\
a & = -1
\end{align}$
Untuk $x=-1$ maka $y=0$ dan gradien garis singgung adalah $m=y'=6x^{2}+6x+6=6$, persamaan garis adalah:
$\begin{align}
y-y_{1} & = m \left( x-x_{1} \right) \\
y-0 & = 6 \left( x+1 \right) \\
y & = 6 x+ 6
\end{align}$
Untuk $x=0$ maka $y=5$ dan gradien garis singgung adalah $m=y'=6x^{2}+6x+6=6$, persamaan garis adalah:
$\begin{align}
y-y_{1} & = m \left( x-x_{1} \right) \\
y-5 & = 6 \left( x+0 \right) \\
y & = 6 x+5
\end{align}$
Jarak kedua garis adalah jarak titik (-1,0) pada garis $y = 6 x+6$ ke garis $y = 6 x+5$, yaitu:
$\begin{align}
d & = \left| \dfrac{ax_{1}+by_{1}+c}{\sqrt{a^{2}+b^{2}}} \right| \\
& = \left| \dfrac{(-6)(-1)+(1)(0)-5}{\sqrt{(-6)^{2}+(1)^{2}}} \right| \\
& = \left| \dfrac{1}{\sqrt{36+1}} \right| \\
& = \left| \dfrac{1}{\sqrt{37}} \right|
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(E)\ \dfrac{1}{\sqrt{37}}$
97. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika fungsi $\sqrt{ \dfrac{x^{2}-8x+5}{x^{2}+x+12}}$ terdefenisi untuk $x \leq a$ atau $x \geq a$, maka nilai $a+b=\cdots$
$\begin{align}
(A)\ & 8 \\
(B)\ & 5 \\
(C)\ & 0 \\
(D)\ & -5 \\
(E)\ & -8
\end{align}$
Agar sebuah $f(x)$ terdefinisi maksudnya adalah batasan nilai $x$ agar fungsi $f(x)$ mempunyai nilai real atau sering juga disebut hanya "agar fungsi $f(x)$ mempunyai penyelesaian".
Fungsi pada soal terdiri atas dua fungsi yaitu, fungsi bentuk akar dan fungsi pecahan.
Untuk fungsi pecahan $f(x)=\dfrac{u(x)}{v(x)}$, agar fungsi pecahan terdefenisi (mempunyai nilai real) syaratnya adalah penyebut tidak sama dengan nol $v(x) \neq 0$.
Pada soal di atas penyebut adalah $y=x^{2}+x+12$ karena $a \gt 0$ dan $D \lt 0$ sehingga fungsi selalu bernilai positif untuk setiap $x$ bilangan real atau definit positif.
Untuk fungsi bentuk akar $f(x)=\sqrt{u(x)}$, agar fungsi pecahan terdefenisi (mempunyai nilai real) syaratnya adalah yang di dalam akar harus lebih dari atau sama dengan nol $u(x) \geq 0$. Karena penyebut adalah definit positif, sehingga agar fungsi $\dfrac{x^{2}-8x+5}{x^{2}+x+12} \geq 0$ kita cukup mencari batasan nilai $x$ untuk $ x^{2}-8x+5 \geq 0$.
$ \begin{align}
x^{2}-8x+5 & \geq 0 \\
x_{1,2} & = \dfrac{-b\pm \sqrt{b^{2}-4ac}}{2a} \\
& = \dfrac{-(-8)\pm \sqrt{(-8)^{2}-4(1)(5)}}{2(1)} \\
& = \dfrac{8 \pm \sqrt{64-20}}{2} \\
& = \dfrac{8 \pm \sqrt{44}}{2} \\
& = \dfrac{8 \pm 2 \sqrt{11}}{2} \\
x_{1}& = 4 + \sqrt{11} \\
x_{2}& = 4 - \sqrt{11}
\end{align} $
Himpunan penyelesaian pertidaksamaan kuadrat $x^{2}-8x+5 \geq 0$ adalah Himpunan penyelesaian $\sqrt{ \dfrac{x^{2}-8x+5}{x^{2}+x+12}}$, yaitu $x \leq 4 - \sqrt{11}$ atau $x \geq 4 + \sqrt{11}$, sehingga nilai $a+b= 4 - \sqrt{11}+4 + \sqrt{11}=8$.
$\therefore$ Pilihan yang sesuai adalah $(A)\ 8$
98. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika garis $y=2x-3$ menyinggung parabola $y=4x^{2}+ax+b$ di titik $(-1,-5)$ serta $a$ dan $b$ adalah konstanta, maka $a+b=\cdots$
$\begin{align}
(A)\ & 8 \\
(B)\ & 9 \\
(C)\ & 10 \\
(D)\ & 11 \\
(E)\ & 12
\end{align}$
Titik $(-1,-5)$ adalah titik singgung sehingga berlaku:
$ \begin{align}
y & =4x^{2}+ax+b \\
-5 & =4(-1)^{2}+a(-1)+b \\
-5 & =4 -a+b \\
-9 & = -a+b \\
a-9 & = b
\end{align} $
Sedikit catatan calon guru yang mungkin kita butuhkan yaitu jika garis $y=2x-3$ menyinggung parabola $y=4x^{2}+ax+b$ maka berlaku diskriminan persamaan kuadrat persekutuan adalah nol $(D=0)$:
$\begin{align}
y & = y \\
4x^{2}+ax+b & = 2x-3 \\
4x^{2}+ax-2x+b+3 & = 0 \\
4x^{2}+(a -2)x+b+3 & = 0 \\
\hline
D & = 0 \\
b^{2}-4ac & = 0 \\
(a-2)^{2}-4(4)(b+3) & = 0 \\
a^{2}-4a+4-16b-48 & = 0 \\
a^{2}-4a -16(a-9)-44 & = 0 \\
a^{2}-4a -16 a+144-44 & = 0 \\
a^{2}-20a+100 & = 0 \\
(a-10) (a-10) &=0 \\
a=10 & \\
\hline
a+b & =10+1=11
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(D)\ 11$
99. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Jika garis $y=mx$ menyinggung elips $\dfrac{(x-2)^{2}}{4}+\dfrac{(y+1)^{2}}{2}=1$, maka nilai $4m=\cdots$
$\begin{align}
(A)\ & 1 \\
(B)\ & 2 \\
(C)\ & 0 \\
(D)\ & -2 \\
(E)\ & -1
\end{align}$
Sedikit catatan calon guru yang mungkin kita butuhkan pada sistem persamaan yaitu jika garis $y=mx$ menyinggung elips $\dfrac{(x-2)^{2}}{4}+(y+1)^{2}}{2}=1$ maka berlaku diskriminan persamaan kuadrat persekutuan adalah nol $(D=0)$:
$\begin{align}
\dfrac{(x-2)^{2}}{4}+\dfrac{(y+1)^{2}}{2} &=1 \\
(x-2)^{2} + 2(mx+1)^{2} &=4 \\
x^{2}-4x+4 + 2m^{2}x^{2}+4mx+2 &=4 \\
\left(2m^{2}+1\right)x^{2}+(4m-4)x+2 &=0 \\
\hline
D & = 0 \\
b^{2}-4ac & = 0 \\
(4m-4)^{2}-4\left(2m^{2}+1\right)(2) & = 0 \\
16m^{2}-32m-16m^{2}-8 & = 0 \\
-32m -8 & = 0 \\
-32m & = 8 \\
m & = -\dfrac{8}{32}=-\dfrac{1}{4} \\
4m &= 1
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(A)\ 1$
100. Soal UTBK Tes Kompetensi Akademik SAINTEK 2019
Garis $y=2x+1$ tidak memotong maupun menyinggung hiperbola $\dfrac{(x-2)^{2}}{2}-\dfrac{(y-a)^{2}}{4}=1$, interval nilai $a$ yang memenuhi adalah....
$\begin{align}
(A)\ & -7 \lt a \lt 3 \\
(B)\ & -3 \lt a \lt 7 \\
(C)\ & a \lt 3\ \text{atau}\ a \gt 7 \\
(D)\ & a \lt -7\ \text{atau}\ a \gt 3 \\
(E)\ & 3 \lt a \lt 7
\end{align}$
Sedikit catatan calon guru yang mungkin kita butuhkan pada sistem persamaan yaitu jika garis $y=2x+1$ tidak memotong maupun menyinggung hiperbola $\dfrac{(x-2)^{2}}{2}-\dfrac{(y-a)^{2}}{a}=1$ maka berlaku diskriminan persamaan kuadrat persekutuan kurang dari nol $(D \lt 0)$:
$\begin{align}
\dfrac{(x-2)^{2}}{2}-\dfrac{(y-a)^{2}}{4} &=1 \\
\dfrac{x^{2}-4x+4}{2}-\dfrac{y^{2}-2ay+a^{2}}{4} &=1 \\
2x^{2}-8x+8 - y^{2}+2ay-a^{2} &=4 \\
2x^{2}-8x+8 - (2x+1)^{2}+2a(2x+1)-a^{2} &=4 \\
2x^{2}-8x+8 - \left( 4x^{2}+4x+1 \right)+4ax +2a-a^{2} &=4 \\
-2x^{2}-12x+4ax-a^{2}+2a+3 &= 0 \\
2x^{2}+(12 -4a)x+a^{2}-2a-3 &= 0 \\
\hline
D & \lt 0 \\
b^{2}-4ac & \lt 0 \\
(12-4a)^{2}-4 (2) \left( a^{2}-2a-3 \right) & \lt 0 \\
144-96a+16a^{2}-8a^{2}+16a+24 & \lt 0 \\
8a^{2}-80a +168 & \lt 0 \\
a^{2}- 10a +21 & \lt 0 \\
(a-3)(a-7) & \lt 0
\end{align}$
Himpunan penyelesaian pertidaksamaan kuadrat di atas adalah $3 \lt a \lt 7 $
$\therefore$ Pilihan yang sesuai adalah $(E)\ 3 \lt a \lt 7 $
Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras
Saran, Kritik atau Masukan yang sifatnya membangun terkait masalah alternatif penyelesaian 100 Soal dan Pembahasan UTBK Matematika Kelompok SAINTEK Tahun 2019 di atas sangat diharapkan😊CMIIW
Jangan Lupa Untuk Berbagi 🙏Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊
Video pilihan khusus untuk Anda 💗 Bagaimana perkalian dikerjakan dengan cara piral (pintar bernalar);
Belum ada Komentar untuk "100 Soal dan Pembahasan UTBK Matematika Kelompok SAINTEK Tahun 2019"
Posting Komentar